man 255: ours SOLUTIONS
Name: \qquad
Circle one: Rhodes (F01) I Bueler (F02)
25 points possible. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit.

1. [6 points] The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.

a. $\int_{-2}^{0} f(x) d x=3 \cdot 2=6$
b. $\int_{4}^{0} f(x) d x=-\int_{0}^{4} f(x) d x=-\left(\frac{1}{2} \cdot 3 \cdot 1-\frac{1}{2} \cdot 3 \cdot 3\right)=3$
c. $\int_{-2}^{4} f(x) d x=\int_{-2}^{0} f(x) d x+\int_{0}^{4} f(x) d x=6-3=3$
2. [6 points] A particle is moving with the given acceleration $a(t)$ and other data. Find the position $s(t)$ of the particle.

$$
\begin{aligned}
& a(t)=3 \cos t-2 \sin t, \quad s(0)=0, \quad v(0)=4 \\
& s^{\prime \prime}(t)=3 \cos t-2 \sin t \\
& s^{\prime}(t)=3 \sin t+2 \cos t+c_{\text {, but }}: s^{\prime}(0)=v(0)=4 \\
& 3 \cdot 0+2 \cdot 1+c=4 \\
& c=2 \\
& s(t)=-3 \cos t+2 \sin t+2 t+k \text {, but: } \quad s(0)=0 \\
& -3.1+2.0+2.0+K=0 \\
& s(t)=-3 \cos t+2 \sin t+2 t+3 \\
& k=3
\end{aligned}
$$

3. [8 points] Consider the graph of $f(x)=\frac{1}{1+x}$ below.

a. In the figure above, sketch four rectangles corresponding to the $n=4$ Riemann sum on the interval $1 \leq x \leq 3$. Use left endpoints.

$$
f(1)=\frac{1}{2}, f\left(\frac{3}{2}\right)=\frac{1}{1+\frac{3}{2}}=\frac{2}{5}, f(2)=\frac{1}{3}, f\left(\frac{5}{2}\right)
$$

b. Compute the numerical value of the Riemann sum illustrated in part a. Express your answer as a single fraction.

$$
\begin{aligned}
L_{4} & =f(1) \cdot \frac{1}{2}+f(3 / 2) \cdot \frac{1}{2}+f(2) \cdot \frac{1}{2}+f\left(\frac{5}{2}\right) \cdot \frac{1}{2} \\
& \left.=\frac{1}{2}\left(\frac{1}{2}+\frac{2}{5}+\frac{1}{3}+\frac{2}{7}\right)=\frac{105+\left(\frac{105+84+70+60}{210}\right.}{210}\right) \\
& =\frac{319}{420}
\end{aligned}
$$

c. Is your numerical value in part \mathbf{b} an overestimate or an underestimate of $\int_{1}^{3} \frac{1}{1+x} d x$?

Over estimate
4. [5 points] Use the Midpoint Rule with $n=2$ subintervals to approximate the integral. Express your answer as a single fraction.

$$
\begin{aligned}
& \int_{0}^{4} \times 2^{-x} d x \approx 2 \cdot f(1)+2 \cdot f(3) \\
&=2 \cdot\left(1 \cdot 2^{-1}\right)+2 \cdot\left(3 \cdot 2^{-3}\right) \\
&=\frac{2}{2}+\frac{2 \cdot 3}{2^{3}}=\frac{7}{4}
\end{aligned}
$$

$$
f(x)=x 2^{-x}
$$

