Name:
Circle one: Rhodes (F01) I Bueler (F02)
25 points possible. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit.

1. [6 points] The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.

a. $\int_{-2}^{0} f(x) d x=$
b. $\int_{4}^{0} f(x) d x=$
c. $\int_{-2}^{4} f(x) d x=$
2. [6 points] A particle is moving with the given acceleration $a(t)$ and other data. Find the position $s(t)$ of the particle.

$$
a(t)=3 \cos t-2 \sin t, \quad s(0)=0, \quad v(0)=4
$$

3. [8 points] Consider the graph of $f(x)=\frac{1}{1+x}$ below.

a. In the figure above, sketch four rectangles corresponding to the $n=4$ Riemann sum on the interval $1 \leq x \leq 3$. Use left endpoints.
b. Compute the numerical value of the Riemann sum illustrated in part a. Express your answer as a single fraction.
c. Is your numerical value in part \mathbf{b} an overestimate or an underestimate of $\int_{1}^{3} \frac{1}{1+x} d x$?
4. [5 points] Use the Midpoint Rule with $n=2$ subintervals to approximate the integral. Express your answer as a single fraction.

$$
\int_{0}^{4} x 2^{-x} d x \approx
$$

