Name: \qquad
Circle one: Rhodes (F01) I Bueler (F02)
25 points possible. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit.

1. [6 points] A particle is moving with the given acceleration $a(t)$ and other data. Find the position $s(t)$ of the particle.

$$
S^{\prime \prime}(t)=a(t)=2 \cos t-3 \sin t, \quad s(0)=0, \quad v(0)=4
$$

$$
s^{\prime}(t)=2 \sin t+3 \cos t+c \text { but: } s^{\prime}(0)=v(0)=4
$$

$$
2 \cdot 0+3 \cdot 1+c=4
$$

$$
S(t)=-2 \cos t+3 \sin t+t+k
$$

$$
c=1
$$

but:
$s(0)=0$

2. [6 points] The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.

a. $\int_{-2}^{0} f(x) d x=3 \cdot 2=6$
b. $\int_{4}^{0} f(x) d x=-\int_{0}^{4} f(x) d x=-\left(\frac{1}{2} \cdot 3 \cdot 1-\frac{1}{2} \cdot 3 \cdot 3\right)=3$
c. $\int_{-2}^{4} f(x) d x=\int_{-2}^{0} f(x) d x+\int_{0}^{4} f(x) d x=6-3=3$
3. [8 points] Consider the graph of $f(x)=\frac{1}{1+x}$ below.

$$
\Delta x=\frac{1}{2}
$$

a. In the figure above, sketch four rectangles corresponding to the $n=4$ Riemann sum on the interval $1 \leq x \leq 3$. Use right endpoints. $f\left(\frac{3}{2}\right)=\frac{2}{5}, f(2)=\frac{1}{3}, f(5 / 2)=\frac{2}{7}, f(3)=\frac{1}{4}$
b. Compute the numerical value of the Riemann sum illustrated in part a. Express your answer as a single fraction.

$$
\begin{aligned}
& R_{4}=f\left(\frac{3}{2}\right) \cdot \frac{1}{2}+f(2) \cdot \frac{1}{2}+f\left(\frac{5}{2}\right) \cdot \frac{1}{2}+f(3) \cdot \frac{1}{2} \\
& =\frac{1}{2}\left(\frac{2}{5}+\frac{1}{3}+\frac{2}{7}+\frac{1}{4}\right)=\frac{1}{2}\left(\frac{168+140+120+105}{420}\right) \\
& =\frac{1}{2} \frac{533}{420}=\frac{533}{840} \\
& \text { c. Is your numerical value in part } \mathbf{b} \text { an overestimate or an underestimate of } \int_{1}^{3} \frac{1}{1+x} d x \text { ? } \\
& \text { underestimate }
\end{aligned}
$$

4. [5 points] Use the Midpoint Rule with $n=2$ subintervals to approximate the integral. Express your answer as a single fraction.

$$
\begin{aligned}
\int_{0}^{4} x 2^{-1} d x \approx & 2 \cdot f(1)+2 \cdot f(3) \\
& =2 \cdot\left(1 \cdot 2^{-1}\right)+2 \cdot\left(3 \cdot 2^{-3}\right) \\
& =\frac{2}{2}+\frac{2 \cdot 3}{2^{3}}=\frac{7}{4}
\end{aligned}
$$

$$
f(x)=x 2^{-x}
$$

