Name:

Circle one: Faudree (F01) I Bueler (F02) | VanSpronsen (UX1)

25 points possible. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit.

1. [8 points] On the axes below, sketch the graph of the function

$$
f(x)= \begin{cases}1+x & x<1 \\ 2 & x=1 \\ \frac{1}{1-x} & x>1\end{cases}
$$

Then compute the requested values.

a. $f(1)=\square$
b. $\lim _{x \rightarrow 1^{-}} f(x)=\square$
c. $\lim _{x \rightarrow 1} f(x)=\square$

Justify your answer to part \mathbf{c} :
2. [4 points] Consider the following graph $y=f(x)$.

a. Sketch the secant line through points P and Q. (Add the line to the graph at left.)
b. Find the slope of the secant line through the same points $P(0,2)$ and $Q(2,3)$.
c. Sketch the tangent line through point P.
3. [9 points] Use the graph of the function $f(x)$ to answer the following questions.

a. $f(-6)=$ \qquad
b. $f(0)=$ \qquad
c. $f(4)=$ \qquad
d. $\lim _{x \rightarrow 0^{+}} f(x)=$ \qquad
e. $\lim _{x \rightarrow 0^{-}} f(x)=$ \qquad
f. $\lim _{x \rightarrow 0} f(x)=$ \qquad
g. $\lim _{x \rightarrow-4^{+}} f(x)=$ \qquad
h. $\lim _{x \rightarrow 6} f(x)=$ \qquad
i. $\lim _{x \rightarrow 4} f(x)=$ \qquad
4. [4 points] Compute the following limits.
a. $\lim _{x \rightarrow 4} \frac{x-3}{(x-4)^{2}}=\square$
b. $\lim _{x \rightarrow 0^{+}} \frac{2}{\sin (x)}=\square$

