\qquad

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points] Evaluate each limit below. Your answer for each should be either a real number, $+\infty$, $-\infty$, or DNE. Show your work to receive full credit.
a. $\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x^{2}+x-6}=\frac{9-12+3}{9-3-6}=\frac{0}{0}$-factor trance!!

$$
=\lim _{x \rightarrow-3} \frac{(x+3)(x+1)}{(x+3)(x-2)}=\lim _{x \rightarrow-3} \frac{x+1}{x-2}=\frac{-3+1}{-3-2}=\frac{-2}{-5}=\frac{2}{5}
$$

b. $\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9 x-x^{2}}=0$ Do algebra!

$$
\begin{gathered}
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9 x-x^{2}} \cdot \frac{3+\sqrt{x}}{3+\sqrt{x}}=\lim _{x \rightarrow 9} \frac{9-x}{x(9-x)(3+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{1}{x(3+\sqrt{x})}=\frac{1}{9(3+3)}=\frac{1}{54} \\
\text { c. } \lim _{h \rightarrow 0^{-}} \frac{2 h^{2}+10 h}{|h|}=\lim _{h \rightarrow 0^{-}} \frac{2 h(h+5)}{|h|}=\lim _{h \rightarrow 0^{-}} \frac{2 h(h+5)}{-h}=\lim _{h \rightarrow 0^{-}}-2(h+5) \\
\text { because if } h<0, \\
\text { then }|h|=-h .
\end{gathered}
$$

2. [4 points] Use the Intermediate Value Theorem to show that the equation $e^{x}=4-5 x$ has a root in the interval $(0,1)$.
Let $f(x)=e^{x}-4+5 x$. Observe that $f(x)$ is continuous.
Now $f(0)=e^{0}-4+5.0=-3<0$ and $f(1)=e^{1}-4+5=e+1>0$.
Since f is negative at $x=0$ and positive at $x=1$, it must be Zero Somewhere in between.
3. [8 points] Consider the function $f(x)=\left\{\begin{array}{ll}+2 x+4 & x<0 \\ 1 & x=0 \\ \sqrt{x+16} & x>0 .\end{array} \quad x=0:-2 \cdot 0+4=4\right.$
a. On the axes below, sketch a graph of $f(x)$.

b. Evaluate the limit below or explain why the limit fails to exist.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=4 \text { because } \lim _{x \rightarrow 0^{+}} f(x)= \\
& \lim _{x \rightarrow 0^{+}} 2 x+4=4 \text { and } \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow \sigma} \sqrt{x+16}=4 .
\end{aligned}
$$

c. Is f continuous at $x=0$? Explain using the definition of continuity.

$$
\text { No. } \quad \lim _{x \rightarrow 0} f(x)=4 \neq 1=f(0)
$$

4. [4 points] The graphs of $f(x)$ and $g(x)$ are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

a. $\lim _{x \rightarrow 2}\left(\frac{5 f(x)}{2+g(x)}\right)=\frac{5 \cdot 3}{2+1}=\frac{15}{3}=5$
b. $\lim _{x \rightarrow 2}\left(x^{2} f(x)\right)=2^{2} \cdot 3=12$
