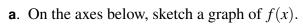
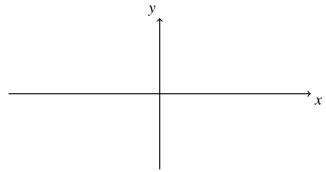
Circle one: Faudree (F01) | Bueler (F02) | VanSpronsen (UX1)

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points] Evaluate each limit below. Your answer for each should be either a real number, $+\infty$, $-\infty$, or DNE. Show your work to receive full credit.

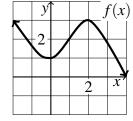

a.
$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x^2 + x - 6}$$

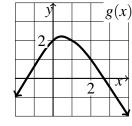

b.
$$\lim_{x \to 9} \frac{3 - \sqrt{x}}{9x - x^2}$$

c.
$$\lim_{h \to 0^-} \frac{2h^2 + 10h}{|h|}$$

2. [4 points] Use the Intermediate Value Theorem to **show** that the equation $e^x = 4 - 5x$ has a root in the interval (0,1).

3. [8 points] Consider the function $f(x) = \begin{cases} 2x+4 & x < 0 \\ 1 & x = 0 \\ \sqrt{x+16} & x > 0. \end{cases}$




b. Evaluate the limit below or explain why the limit fails to exist.

$$\lim_{x \to 0} f(x) =$$

c. Is f continuous at x = 0? Explain using the definition of continuity.

4. [4 points] The graphs of f(x) and g(x) are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

a.
$$\lim_{x \to 2} \frac{5f(x)}{2 + g(x)} =$$

$$\mathbf{b.} \lim_{x \to 2} x^2 f(x) =$$