\qquad

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points] Evaluate each limit below. Your answer for each should be either a real number, $+\infty$, $-\infty$, or DNE. Show your work to receive full credit.
a. $\lim _{x \rightarrow-3} \frac{x^{2}+2 x-3}{x^{2}+5 x+6}=\frac{9-6-3}{9-15+6}=\frac{0}{0}$ reactor cancel!

$$
=\lim _{x \rightarrow-3} \frac{(x+3)(x-1)}{(x+3)(x+2)}=\lim _{x \rightarrow-3} \frac{x-1}{x+2}=\frac{-3-1}{-3+2}=\frac{-4}{-1}=4
$$

b. $\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4 x-x^{2}}=\frac{2-2}{16-16}=\frac{0}{0}$ algebra.

$$
=\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4 x-x^{2}} \cdot \frac{(2+\sqrt{x})}{(2+\sqrt{x})}=\lim _{x \rightarrow 4} \frac{4-x}{x(4-x)(2+\sqrt{x})}=\lim _{x \rightarrow 4} \frac{1}{x(2+\sqrt{x})}=\frac{1}{4(2+2)}=\frac{1}{16}
$$

c. $\lim _{h \rightarrow 0^{-}} \frac{2 h^{2}+14 h}{|h|}=\lim _{h \rightarrow 0^{-}} \frac{2 h(h+7)}{-h}=\lim _{h \rightarrow 0^{-}}-2(h+7)=-14$

If $h<0$,
then $|h|=-h$.
2. [4 points] Use the Intermediate Value Theorem to show that the equation $e^{x}=6-8 x$ has a root in the interval $(0,1)$.
Let $f(x)=e^{x}+8 x-6$. Observe that $f(x)$ is continuous.
Now $f(0)=e^{0}+8 \cdot 0-6=-5<0$ and $f(1)=e^{1}+8 \cdot 1-6=e+2>0$.
Since $f(0)<0$ and $f(1)>0, f(x)$ must equal zero somewhere in $(0,1)$.
3. [8 points] Consider the function $f(x)= \begin{cases}2-2 x & x<1 \\ 3 & x=1 \\ \sqrt{x-1} & x>1 .\end{cases}$
a. On the axes below, sketch a graph of $f(x)$.

b. Evaluate the limit below or explain why the limit fails to exist.

$$
\lim _{x \rightarrow 1} f(x)=0
$$

$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \sqrt{x-1}=0$ and $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2-2 x=0$
Both one-sided limits are equal.
c. Is f continuous at $x=1$? Explain using the definition of continuity.

$$
\text { No. } \lim _{x \rightarrow 1} f(x)=0 \neq 3=f(0) \text {. }
$$

4. [4 points] The graphs of $f(x)$ and $g(x)$ are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

a. $\lim _{x \rightarrow 2} \frac{5 f(x)}{2+g(x)}=\frac{5 \cdot 3}{2+2}=\frac{15}{4}$
b. $\lim _{x \rightarrow 2} 4 x+f(x)=4 \cdot 2+3=11$
