Circle one: Faudree (F01) \| Bueler (F02) \| VanSpronsen (UX1)
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points] Evaluate each limit below. Your answer for each should be either a real number, $+\infty$, $-\infty$, or DNE. Show your work to receive full credit.
a. $\lim _{x \rightarrow-3} \frac{x^{2}+2 x-3}{x^{2}+5 x+6}$
b. $\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4 x-x^{2}}$
c. $\lim _{h \rightarrow 0^{-}} \frac{2 h^{2}+14 h}{|h|}$
2. [4 points] Use the Intermediate Value Theorem to show that the equation $e^{x}=6-8 x$ has a root in the interval $(0,1)$.
3. [8 points] Consider the function $f(x)= \begin{cases}2-2 x & x<1 \\ 3 & x=1 \\ \sqrt{x-1} & x>1 .\end{cases}$
a. On the axes below, sketch a graph of $f(x)$.

b. Evaluate the limit below or explain why the limit fails to exist.

$$
\lim _{x \rightarrow 1} f(x)=
$$

c. Is f continuous at $x=1$? Explain using the definition of continuity.
4. [4 points] The graphs of $f(x)$ and $g(x)$ are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

a. $\lim _{x \rightarrow 2} \frac{5 f(x)}{2+g(x)}=$
b. $\lim _{x \rightarrow 2} 4 x+f(x)=$

