Name: \qquad
No aids (calculator, notes, text, etc.) are permitted. Show all work for full credit.

1. [5 points] The graph below shows the population P of mice in a particular garden over the course of 50 days. Give answers to the following in correct units.

a. Find the number of mice on days 25 and 40 .
b. Find the average rate of change of the population from $x=25$ to $x=40$.
c. Find the average rate of change of the population during the entire period.
2. [6 points] Compute the following limit. Justify your answer with a sentence or two.

$$
\lim _{x \rightarrow 2^{+}} \frac{6 x}{2-x}=\square
$$

3. [9 points] Use the graph of the function of $f(x)$ to answer the following questions.

a. $\lim _{x \rightarrow 4} f(x)=$ \qquad
b. $\lim _{x \rightarrow 2^{-}} f(x)=$ \qquad
c. $\lim _{x \rightarrow-1} f(x)=$ \qquad
d. $f(-1)=$ \qquad
e. $f(4)=$ \qquad
f. $f(-3)=$ \qquad
g. $\lim _{x \rightarrow-3^{-}} f(x)=$ \qquad
h. $\lim _{x \rightarrow-3^{+}} f(x)=$ \qquad
i. $\lim _{x \rightarrow-3} f(x)=$ \qquad
4. [5 points] Suppose the distance traveled by a car from time $t=0$ minutes is given by $d(t)=t+t^{2}$ where distance is measured in miles.
a. Compute the average speed from time $t=1$ to time $t=3$ minutes.
b. Compute the average speed from time $t=1$ to time $t=2$ minutes.
c. What goes wrong in the previous computations if you try to compute the exact speed at time $t=1$ minutes by computing an average speed from time $t=1$ to time $t=1$?
