Name: \qquad

20 points possible. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [6 points] Consider the function $f(x)=\left\{\begin{array}{ll}1+2 x & \text { if } x<0 \\ -1 & \text { if } x=0 \\ 1-x^{2} & \text { if } x>0\end{array}\right.$.
a. On the axes below, sketch a graph of $f(x)$.

b. Evaluate (with justification) the limit, or explain why it does not exist:

$$
\begin{array}{c|l}
\lim _{x \rightarrow 0} f(x)=1 \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=1 & \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(1-x^{2}\right)=1 \\
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(1+2 x)=1
\end{array}
$$

c. Is f continuous at $x=0$? Explain using the definition of continuity.
$y=f(x)$ is not continuous at $x=0$ since

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=1 \neq f(0)=-1 .
$$

2. [4 points] Use the Intermediate Value Theorem to show that there is a root of the equation $x-2 \cos (x)+1=0$ in the interval $(0, \pi)$.
Let $f(x)=x-2 \cos (x)+1$ (is continuous an $[0, \pi]$)

- $f(0)=0-2 \cos (0)+1=-2+1=-1<0$
- $f(\pi)=\pi-2 \cos (\pi)+1=\pi-1>0$

Therefore, there exists a number c in $(0, \pi)$ such that
3. [6 points] Evaluate the limit. Show work and use proper limit notation for full credit.

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{5+h}-\frac{1}{5}}{h}=\lim _{h \rightarrow 0} \frac{7-8-h}{5(h+5) \cdot h}=\lim _{h \rightarrow 0} \frac{-x^{\prime}}{5(h+5) \nmid x}=\frac{-1}{25}
$$

4. [4 points]
a. Why is the following not, strictly speaking, a fully true statement?:

$$
\text { (x-1)(x+2)=x+2} \quad \text { Let } f(x)=x+2 \text { and } g(x)=\frac{(x-1)(x+2)}{x-1}
$$

$$
\operatorname{Dam}(f)=\mathbb{R} \Rightarrow \text { The statement is }
$$

$\operatorname{Dom}(g)=\backslash \mathbb{R} \backslash\{1\}$ ne statement
of $f(x)=\frac{1}{x-1}(x+2)$
on the interval $[0,2]$.
b. Carefully sketch the graph of $f(x)=\frac{(x-1)(x+2)}{x-1}$ on the interval $[0,2]$.

