Name: \qquad

20 points possible. A scientific or graphing calculator is permitted (for problem \#3 in particular), but no other aids are allowed. Show all work and use proper notation for full credit.

1. [6 points] The fluid in a cylindrical tank with radius 5 m is draining at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the height of the water changing?

$$
\begin{aligned}
& r=5 \mathrm{~m} \\
& \frac{d v}{d t}=-2 \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

$$
\frac{d h}{d t}-?
$$

$$
\begin{gathered}
v=\pi r^{2} \cdot h \\
\frac{d v}{d t}=\pi r^{2} \cdot \frac{d h}{d t} \\
\| \\
\frac{d h}{d t}=\frac{d v}{d t} \cdot \frac{1}{\pi r^{2}} \\
\frac{d h}{d t}=-2 \cdot \frac{1}{\pi 25}=\frac{-2}{25 \pi} \mathrm{~m} / \text { min }
\end{gathered}
$$

Answer: the height of water is decreasing at rate $\frac{2}{25 \pi} \mathrm{~m} / \mathrm{min}$
2. [6 points]
a. Find the linearization of $f(x)=\sqrt{x}$ at $a=16$.

$$
\begin{aligned}
& L(x)=f^{\prime}(a)(x-a)+f(a) \quad f(a)=4 \\
& f^{\prime}(a)=\frac{1}{2 \sqrt{\sqrt{a}}} \\
& f^{\prime}(16)=\frac{1}{8} \\
& L(x)=\frac{1}{8}(x-16)+4=\frac{1}{8} x+2
\end{aligned}
$$

b. Use part a. to estimate $\sqrt{17}$.

$$
\sqrt{17} \approx L(17)=\frac{1}{8}(17-16)+4=\frac{1}{8}+4=\frac{33}{8} \approx 4.125
$$

3. [8 points] Suppose the temperature of a liquid substance (in ${ }^{\circ} \mathrm{F}$) undergoing a chemical reaction t minutes after its start is modeled by the function

$$
T(t)=\ln \left(t^{2}-t+1\right)
$$

a. What is the initial temperature of the liquid?

$$
T(0)=\ln (1)=0(0 F)
$$

b. Find the time t from $[0,10]$ where the temperature T is at its maximum and minimum values.

$$
\begin{aligned}
& T^{\prime}(t)=\frac{1}{t^{2}-t+1} \cdot(2 t-1)=\frac{2 t-1}{t^{2}-t+1}= \\
& \begin{array}{l}
=\frac{2 t-1}{\left(t-\frac{1}{2}\right)^{2}-\frac{1}{4}+1}=\frac{2 t-1}{\left(t-\frac{1}{2}\right)^{2}+\frac{3}{4}} \\
T^{\prime}(t) \text { exist for all } t_{0} \text { in }[0,10]
\end{array} \\
& T^{\prime}(t)=0 \Rightarrow \frac{2 t-1}{t^{2}-t+1}=0 \Rightarrow 2 t=1 \Rightarrow t=\frac{1}{2} \\
& T\left(\frac{1}{2}\right)=\ln \left(\frac{1}{4}-\frac{1}{2}+1\right)=\ln (0.75) \approx-0.29\left({ }^{\circ} \mathrm{F}\right) \\
& T(0)=O\left({ }^{\circ} \mathrm{F}\right) \\
& T(10)=\ln (100-10+1)=\ln (91) \approx 4.51\left({ }^{\circ} \mathrm{F}\right) \\
& \text { Answer: at } t=\frac{1}{2}(\text { min }) \quad T_{\text {min }}=-0.29\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

