Name: \qquad

20 points possible. No aids are allowed. Show all work and use proper notation for full credit.

1. [6 points] Compute, with justification, the following limits:
a. $\lim _{t \rightarrow 0} \frac{\sin \left(t^{2}\right)}{t^{2}}=\frac{n}{0}$

$$
\lim _{t \rightarrow 0} \frac{\sin \left(t^{2}\right)}{t^{2}} \frac{L^{L} H}{=} \lim _{t \rightarrow 0} \frac{\cos \left(t^{2}\right) \cdot 2 t}{2 t}=1
$$

b. $\lim _{x \rightarrow \infty} e^{-x} \ln (x)={ }^{11} 0 \cdot \infty^{16}$

$$
\lim _{x \rightarrow \infty} e^{-x} \cdot \ln (x)=\lim _{x \rightarrow \infty} \frac{\ln (x) \frac{\infty}{e}}{e^{x}} \lim _{x \rightarrow \infty} \frac{1}{x} \frac{x}{e^{x}} \lim _{x \rightarrow \infty} \frac{1}{x e^{x}}=0
$$

2. [4 points] The graph of the derivative f^{\prime} of a function f is shown.

a. On what intervals is f increasing or decreasing? Use interval notation.
$f(x)$ is inereasing where $f^{\prime}(x)>0:(1,2) \cup(6,7)$
$f(x)$ is decereasing where $f^{\prime}(x)<0:(0,1) \cup(3,6)$
b. At what values of x in the open interval $(0,7)$ does f have a local maximum or minimum? $f(x)$ has a loe. max at $x=3$ $f(x)$ has a boe. min at $x=1$ and $x=6$
3. [10 points] Consider the function $f(x)=x e^{x}$
a. Show that $f^{\prime}(-1)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=x e^{x}+e^{x}=e^{x}(1+x) \\
& f^{\prime}(-1)=e^{-1}(1-1)=0
\end{aligned}
$$

b. Use the first derivative test to determine if a local minimum, a local maximum, or neither occurs at $x=-1$.

1. $f^{\prime}(-1)=0$

2. $f^{\prime}(x)$ is changing its sign from \oplus to Θ min at $x=-1$ and it is ${ }^{2} f(-1)=-1$ as a loo.
c. Is $f(x)$ concave up, concave down, or neither at $x=-1$?

$$
\begin{aligned}
& f^{\prime \prime}(x)=\left(e^{x}(x+1)\right)^{\prime}=e^{x}(x+1)+e^{x}=e^{x}(x+2) \\
& f^{\prime \prime}(-1)=e^{-1}(-1+2)=\frac{1}{e}>0 .
\end{aligned}
$$

Therefore, $f(x)$ is concave up at $x=-1$
d. What does the previous answer tell you about the critical number $x=-1$?

Based on part © we have that at $x=-1$ the function $f(x)$ attains its bloc. min value.
e. Determine any points of inflection of $f(x)$.

$$
\begin{aligned}
& f^{\prime \prime}(x)=0 \Rightarrow e^{x}(x+2)=0 \Rightarrow x=-2 \\
& \text { Therefore, } \\
& x=-2 \quad f(-2)=\frac{-2}{e^{2}} \quad f^{\prime 2}+f^{\prime \prime}(x)
\end{aligned}
$$

yap Catausus $\left(-2,-\frac{2}{e^{2}}\right)$ is the only one IP. Spring 2021

