Name: \qquad

25 points possible. A graphing or scientific calculator is allowed. No aids are permitted. Show all work and use proper notation for full credit.

1. [9 points] Compute the following definite integrals.
a. $\int_{-2}^{2}\left(4-x^{2}\right) d x=\left.\left(4 x-\frac{x^{3}}{3}\right)\right|_{-2} ^{2}=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)=$

$$
=16-\frac{16}{3}=\frac{32}{3}
$$

b. $\int_{0}^{\pi / 2} \sin (t) d t=-\left.\cos (t)\right|_{0} ^{\frac{\pi}{2}}=-\cos \left(\frac{\pi}{2}\right)+\cos (0)=$ $=1$
c. $\begin{aligned} & \int_{1}^{6} \frac{2+x^{2}}{\sqrt{x}} d x=\int_{1}^{6}\left(2 x^{-1 / 2}+x^{3 / 2}\right) d x=\left.\left[2 \frac{x^{1 / 2}}{1 / 2}+\frac{x^{5 / 2}}{5 / 2}\right]\right|_{1} ^{6}= \\ &=\left(4 \sqrt{6}+\frac{2}{5} \sqrt{6^{5}}\right)-\left(4+\frac{2}{5}\right)\end{aligned}$
2. [2 points] Compute the derivative of the following function:

$$
f(x)=\int_{0}^{2 x} \sqrt{1+t^{2}} d t
$$

By the FTC part 1:

$$
f^{\prime}(x)=\sqrt{1+(2 x)^{2}} \cdot\left(2 x^{\prime}\right)=\sqrt{1+4 x^{2}} \cdot 2
$$

3. [6 points] The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.

a. $\int_{-4}^{0} f(x) d x=6+2+2=10$
b. $\int_{0}^{4} f(x) d x=-\frac{1}{2} 3 \cdot 2=-3$
c. $\int_{4}^{-2} f(x) d x=-\int_{-2}^{4} f(x) d x=6-3=3$
4. [8 points] Assuming $\int_{1}^{5} f(x) d x=3, \int_{5}^{7} f(x) d x=-2$ and $\int_{1}^{5} g(x) d x=4$, compute the following.
a. $\int_{1}^{5} 2 f(x) d x=2 \int_{1}^{5} f(x) d x=2 \cdot 3=6$
b. $\int_{5}^{5} f(x) d x=\bigcirc$
-. $\int_{1}^{f}(x) d x=\int_{1}^{5} f(x) d x+\int_{5}^{7} f(x) d x=3-2=1$
d. $\int_{1}^{5}[f(x)-2 g(x)] d x=\int_{1}^{5} f(x) d x-2 \int_{1}^{5} g(x) d x=3-2 \cdot 4=-5$
