Sept 2, 2021 Jan 20, 2022

____ / 25

Name: .

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

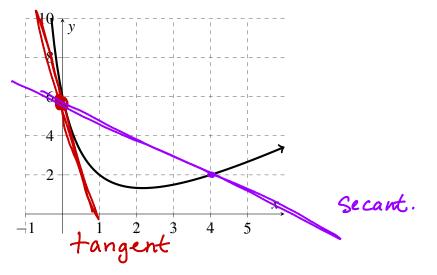
- 1. [11 points] Let P(0,6) be a point on the graph of $f(x) = \frac{10}{x+1} + x 4$.
 - **a**. Find the slope of the secant line passing through *P* and the point Q(1, f(1)).

$$f(1) = \frac{10}{2} + 1 - 4 = 5 - 3 = 2$$
; $m_{sec} = \frac{4y}{4x} = \frac{6 - 2}{0 - 1} = -4$

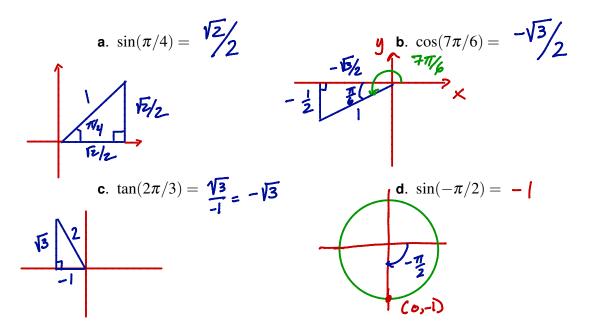
b. Find the slope of the secant line passing through P and the point Q(4, f(4)).

$$f(4) = \frac{10}{5} + 4 - 4 = 2; \quad m_{sec} = \frac{\Delta y}{\Delta x} = \frac{6 - 2}{0 - 4} = -1$$

c. The table below lists the slope of the secant line passing through the point *P* and the point Q(x, f(x)) for several values of *x*.


as X-7 0			-> 0	e		•		
X	-0.1	-0.01	-0.001	0.001	0.01	0.1		
f(x)	7.011111	6.091010				5.91099		
m _{sec}	-10.111111	-9.101010	-9.00100	-8.99900	-8.90099	-8.090909		
$m_{s_1} \rightarrow -9 \qquad -9 \leq$								

Use the information in the table to estimate the slope of the tangent line to f(x) at the point P(0,6).


d. Use the slope from part (c) above to write an equation of the tangent line at point P(0,6).

m = -9	line:	y - 6 = -9(x - 0)	or	$\mu = b - 9x$
point (0,6)		5		J • M

e. Below is a sketch of the graph of $f(x) = \frac{8x}{x+1}$. Sketch the **tangent** line to the graph at the point P(0,6) and sketch the **secant** line between P(0,6) and Q(4, f(4)).

2. [8 points] Evaluate the expressions below. Assume all angles are measured in radians.

3. [2 points] Use the right triangle below, with side lengths 12, 5 and 13, to evaluate the expressions.

4. [4 points] An athlete is running along a straight path. The position of the athlete is given by $d(t) = \frac{1}{2}t^2 + t$, where *t* is time measured in seconds and *d* is distance measured in meters. Find the average velocity of the athlete between t = 2 and t = 4. Include units with your answer.

average
Velocity =
$$\frac{\Delta d}{\Delta t} = \frac{12-4}{4-2} = \frac{8}{2} = 4$$
 m/s
 $d(4) = \frac{1}{2} \cdot \frac{16}{4} = 8 + 4 = 12$
 $d(2) = \frac{1}{2} \cdot \frac{4}{2} = 2 + 2 = 4$