Name: \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [11 points] Let $P(0,6)$ be a point on the graph of $f(x)=\frac{10}{x+1}+x-4$.
a. Find the slope of the secant line passing through P and the point $Q(1, f(1))$.

$$
f(1)=\frac{10}{2}+1-4=5-3=2 ; \quad m_{\sec }=\frac{\Delta y}{\Delta x}=\frac{6-2}{0-1}=-4
$$

b. Find the slope of the secant line passing through P and the point $Q(4, f(4))$.

$$
f(4)=\frac{10}{5}+4-4=2 ; \quad m_{\sec }=\frac{\Delta y}{\Delta x}=\frac{6-2}{0-4}=-1
$$

c. The table below lists the slope of the secant line passing through the point P and the point $Q(x, f(x))$ for several values of x.

$m_{\text {sec }} \rightarrow-9$
Use the information in the table to estimate the slope of the tangent line to $f(x)$ at the point $P(0,6)$.

$$
\text { as } x \rightarrow 0, \quad m_{\sec } \rightarrow-9 ; \quad \text { estimate } m_{\tan }=-9 .
$$

d. Use the slope from part (c) above to write an equation of the tangent line at point $P(0,6)$.
$m=-9 \quad$ line: $y-6=-9(x-0)$ or $y=6-9 x$
e. Below is a sketch of the graph of $f(x)=\frac{8 x}{x+1}$. Sketch the tangent line to the graph at the point $P(0,6)$ and sketch the secant line between $P(0,6)$ and $Q(4, f(4))$.

2. [8 points] Evaluate the expressions below. Assume all angles are measured in radians.
a. $\sin (\pi / 4)=\sqrt{2} / 2$

c. $\tan (2 \pi / 3)=\frac{\sqrt{3}}{-1}=-\sqrt{3}$

3. [2 points] Use the right triangle below, with side lengths 12,5 and 13 , to evaluate the expressions.

4. [4 points] An athlete is running along a straight path. The position of the athlete is given by $d(t)=\frac{1}{2} t^{2}+t$, where t is time measured in seconds and d is distance measured in meters. Find the average velocity of the athlete between $t=2$ and $t=4$. Include units with your answer.

$$
\begin{aligned}
& \text { average } \\
& \text { velocity }
\end{aligned}=\frac{\Delta d}{\Delta t}=\frac{12-4}{4-2}=\frac{8}{2}=4 \mathrm{~m} / \mathrm{s} .
$$

