\qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points] Define $G(x)=\int_{0}^{x} f(t) d t$ where the graph of $f(t)$ is drawn below.

a. Determine $G(4)$.

$$
G(4)=\int_{0}^{4} f(t) d t=6
$$

b. Does $G(x)$ have a maximum on the interval $[0,8]$? Explain your answer. Yes. G has a maximum at $x=4$ because $G^{\prime}=f$ is positive on the left and negative on the right.
2. [6 points] Use the Fundamental Theorem of Calculus (Part 1) to find each derivative.
a. $\frac{d}{d x}\left(\int_{1}^{x} \ln (t) d t\right)=\ln (x)$
D. $\frac{d}{d x}\left(\int_{\cos (1)}^{1} \sqrt{1-r^{2}(x)}\right)=\left(\sqrt{1-\cos ^{2} x}\right)(-\sin (x))$
3. [8 points] Evaluate each definite integral using the Fundamental Theorem of Calculus Part 2.
a. $\left.\int_{1}^{53} \frac{2}{d^{2}} d x=\int_{1}^{25} 2 x^{-1 / 2} d x=2 \cdot 2 x^{12}\right]_{1}^{25}$

$$
=4(\sqrt{25}-\sqrt{1})=4(5-1)=16
$$

b. $\begin{gathered}\left.\int_{0}^{\pi / 2}(5-3 \sin (x)) d x=5 x+3 \cos (x)\right]_{0}^{\frac{\pi}{2}}=\left(\frac{5 \pi}{2}+3 \cos \left(\frac{\pi}{2}\right)\right)-(0+3 \cos (0)) \\ =\frac{\downarrow \pi}{2}-3\end{gathered}$
4. [7 points] A ball is thrown upward from an initial height of 2 m at an initial speed of $20 \mathrm{~m} / \mathrm{s}$. Acceleration resulting from gravity is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$. (Just to be clear, we are assuming $a(t)=-9.8$ is the equation modeling the acceleration of the ball.)
a. Solve for $v(t)$, the velocity of the ball t seconds after it is thrown into the air.

$$
v(t)=\int a(t) d t=\int-9.8 d t=-9.8 t+C
$$

use $v(0)=20$.
So $v(0)=(-9.8)(0)+c=20$

$$
V(t)=-9.8 t+20
$$

So, $C=20$
b. Solve for $h(t)$, the height of the ball t seconds after it is thrown into the air.

$$
\begin{aligned}
& h(t)=\int v(t) d t=\int(-9.8 t+20) d t=-4.9 t^{2}+20 t+c \\
& h(0)=2 \\
& \text { So } h(0)=(-4.9)(0)^{2}+20(0)+c=2 \quad h(t)=-4.9 t^{2}+20 t+2 \\
& \text { So } C=2 .
\end{aligned}
$$

