Name: $\qquad$
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points] Define $G(x)=\int_{0}^{x} f(t) d t$ where the graph of $f(t)$ is drawn below.

a. Determine $G(4)$.
b. Does $G(x)$ have a maximum on the interval $[0,8]$ ? Explain your answer.
2. [6 points] Use the Fundamental Theorem of Calculus (Part 1) to find each derivative.
a. $\frac{d}{d x}\left(\int_{1}^{x} \ln (t) d t\right)$
b. $\frac{d}{d x}\left(\int_{\cos (x)}^{1} \sqrt{1-t^{2}} d t\right)$
3. [8 points] Evaluate each definite integral using the Fundamental Theorem of Calculus Part 2.
a. $\int_{1}^{25} \frac{2}{\sqrt{x}} d x$
b. $\int_{0}^{\pi / 2}(5-3 \sin (x)) d x$
4. [7 points] A ball is thrown upward from an initial height of 2 m at an initial speed of $20 \mathrm{~m} / \mathrm{s}$. Acceleration resulting from gravity is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$. (Just to be clear, we are assuming $a(t)=-9.8$ is the equation modeling the acceleration of the ball.)
a. Solve for $v(t)$, the velocity of the ball $t$ seconds after it is thrown into the air.
b. Solve for $h(t)$, the height of the ball $t$ seconds after it is thrown into the air.
