Name: \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] (optimization) Determine the dimensions of the largest rectangle that can be inscribed in the region below the curve $y=5-\frac{1}{3} x^{2}$ and above the x-axis. Assume the base of the rectangle lies on the x axis. (See figure below.)

a. Identify the objective function. That is, identify the quantity to be maximized or minimized.
b. Write the objective function as a function of x.
c. Answer the question and use Calculus to demonstrate that you answer is correct. (That is, you need to show that you have found a minimum or maximum.)

Dimensions of the largest rectangle are: base $=$ \qquad height $=$ \qquad
2. [9 points] Evaluate the following limits. You must show your work to earn full credit. If you apply L'Hopital's Rule, you should indicate this.
a. $\lim _{x \rightarrow 0} \frac{2 e^{x}-2 x-2}{3 x^{2}}$
b. $\lim _{x \rightarrow 0} \frac{2 x^{2}-5 x}{\cos (x)}$
c. $\lim _{x \rightarrow 0^{+}} x \ln \left(x^{4}\right)$
3. [8 points] Evaluate the following indefinite integrals. You must show your work to earn full credit. If you apply L'Hopital's Rule, you should indicate this.
a. $\int\left(x^{1 / 2}+\sin (x)+5 e^{x}\right) d x$
b. $\int\left(\sec ^{2}(x)+\frac{x+1}{x}\right) d x$

