Name: \qquad
\qquad / 25
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] Use the limit definition of the derivative to find the derivative of $g(x)=10-\frac{1}{x}$. No credit will be awarded a solution that does not use the definition below.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{\left(10-\frac{1}{x+h}\right)-\left(10-\frac{1}{x}\right)}{h}=\lim _{h \rightarrow 0} \frac{-\frac{1}{x+h}+\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-x+x+h}{(x+h)(x)}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{h}{(x+h)(x)}\right)=\lim _{h \rightarrow 0} \frac{1}{(x+h)(x)} \\
& =\frac{1}{(x+0)(x)}=\frac{1}{x^{2}}
\end{aligned}
$$

2. [6 points] The distance in feet that a remote controlled car moves along a straight sidewalk is modeled by the function $s(t)=5 t^{2}+t$, where t is measured in seconds after the car begins moving.
a. Find the average velocity of the car over the time interval from $t=1$ to $t=3$. Include units with your answer.

$$
\begin{gathered}
\text { average } \\
\text { velocity }
\end{gathered}=\frac{\Delta s}{\Delta t}=\frac{s(3)-s(1)}{3-1}=\frac{\left(5 \cdot 3^{2}+3\right)-\left(5 \cdot 1^{2}+1\right)}{2}=\frac{48-6}{2}=21 \mathrm{ft} / \mathrm{s}
$$

b. Find the instantaneous velocity of the car when $t=1$. Include units with your answer.

$$
s^{\prime}(t)=V(t)=10 t+1 ; \quad V(1)=10.1+1=11 \mathrm{ft} / \mathrm{s}
$$

3. [5 points] The graph of $f(x)$ is below. On the same set of axes, make a rough sketch of the graph of $f^{\prime}(x)$.

4. [6 points points] Find the derivative for each function below. You do not need to simplify.

$$
\text { a. } \begin{aligned}
& g(x)=4 \cos (x)+\frac{9}{x^{2}}+\sqrt{x}+2=4 \cos (x)+9 x^{-2}+x^{1 / 2}+2 \\
& \begin{aligned}
g^{\prime}(x) & =-4 \sin (x)+9\left(-2 x^{-3}\right)+\frac{1}{2} x^{-1 / 2}+0 \\
& =4 \sin (x)-18 x^{-3}+\frac{1}{2} x^{-1 / 2}
\end{aligned}
\end{aligned}
$$

b. $f(x)=\sqrt{x}\left(x^{2}+1\right)=x^{\frac{1}{2}}\left(x^{2}+1\right)=x^{\frac{5}{2}}+x^{\frac{1}{2}}$ f^{\prime} using product rule

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}\left(x^{2}+1\right)+x^{1 / 2}(2 x)
$$

$$
\begin{array}{r}
=\frac{x^{2}+1}{2 \sqrt{x}}+2 x^{3 / 2} \xrightarrow[\text { Note these }]{\text { are the same }}+(x)=\frac{3}{2} x \\
\ddots \because \Rightarrow=\frac{x^{2}}{2 \sqrt{x}}+\frac{1}{2 \sqrt{x}}+2 x^{3 / 2} \\
=\frac{1}{2} x^{3 / 2}+\frac{1}{2} x^{-1 / 2}+2 x^{3 / 2} \\
=\frac{5}{2} x^{3 / 2}+\frac{1}{2} x^{-1 / 2} \therefore
\end{array}
$$

$$
f^{\prime}(x)=\frac{5}{2} x^{3 / 2}+\frac{1}{2} x^{-1 / 2}
$$

