Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points] A rectangular solid has constant length of 5 m . Its height is increasing at a rate of $2 \mathrm{~m} / \mathrm{s}$ and its width is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$. How fast is the volume of the solid changing when the height is 9 m and the width is 6 m .

$$
\begin{array}{ll}
V=l w h & l=5 \\
& \frac{d h}{d t}=2 \\
& \frac{d w}{d t}=-3
\end{array}
$$

Find $\frac{d V}{d t}$ when $h=9$ and $\omega=6$

$$
\begin{aligned}
V & =5 w h \\
\frac{d V}{d t} & =5\left(w \cdot \frac{d h}{d t}+\frac{d w}{d t} h\right)=5(6(2)+(-3)(9)) \\
& =5(12-27)=5(-15)=-75 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The volume of the solid is decreasing at a rate of 75 meters per second.
2. [8 points] Let $h(x)=x+3 e^{2 x}$.
a. Find the differential of $h(x)$.

$$
\begin{aligned}
& h^{\prime}(x)=1+6 e^{2 x} \\
& \text { differential: } \quad d h=\left(1+6 e^{2 x}\right) d x
\end{aligned}
$$

b. Find the linear approximation of $h(x)$ at $x=0$.

$$
\begin{array}{ll}
h(0)=0+3 e^{0}=+3 & y-3=7(x-0) \\
h^{\prime}(0)=1+6 e^{0}=7 & \text { Ans: } y=3+7 x
\end{array}
$$

c. If x changes from $x=0$ to $x=0.1$, estimate how much you expect $h(x)$ to change? Your answer should be a decimal or simplified fraction.
At $x=0$ and $d x=0.1, d h=\left(1+6 e^{0}\right)(0.1)=0.7$. So we expect $h(x)$ to increase by 0.7 .
3. [8 points] Let $f(x)=x^{2}(3-4 x)=3 x^{2}-4 x^{3}$
a. Find all critical points for $f(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=6 x-12 x^{2}=6 x(1-2 x)=0 \\
& x=0 \text { or } x=\frac{1}{2}
\end{aligned}
$$

b. Determine the absolute maximum and absolute minimum of $f(x)$ on the interval $[-1,1]$ or state that none exist. You must show your work to receive full credit. See the answer-blank below.

x	$f(x)$
-1	$3+4=7$
1	$3-4=-1$
0	0
$\frac{1}{2}$	$\frac{1}{4}(3-2)=\frac{1}{4}$

\qquad minimum value of $f(x)$: \qquad

