name: Solutions
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. (8 points) Use the definition of the derivative (provided below) to find the derivative of the function $f(x)=\frac{2}{3 x}$. No credit will be awarded for finding the derivative via other methods.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{3(x+h)}-\frac{2}{3 x}}{h}=\lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{6 x-6(x+h)}{3(x+h)(3 x)}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{-6 h}{9(x+h)(x)}\right)=\lim _{h \rightarrow 0} \frac{-6}{9(x+h)(x)} \\
& =\frac{-6}{9(x+0)(x)}=\frac{-2}{3 x^{2}}
\end{aligned}
$$

2. (4 points) The function $H(x)$ is graphed below. Sketch the graph of $H^{\prime}(x)$, the derivative of $H(x)$, on the same set of axes.

3. (9 points) Find $f^{\prime}(x)$ for each function below. You do not need to simplify your answer.

$$
\begin{aligned}
f^{\prime}(x) & =8 \cdot 3 x^{2}-2\left(\frac{1}{2}\right) x^{-1 / 2}+0 \\
& =24 x^{2}-x^{-1 / 2}
\end{aligned}
$$

(b) $f(x)=(x+1) \cos (x) \quad$ (product rule)

$$
\begin{aligned}
f^{\prime}(x) & =(x+1)(-\sin (x))+(1) \cos (x) \\
& =-(x+1) \sin (x)+\cos (x)
\end{aligned}
$$

(c) $f(x)=\frac{\sin (x)}{x_{x}-4} \quad$ (quotient rule)

$$
f^{\prime}(x)=\frac{(5 x-4)(\cos (x))-\sin (x)(5)}{(5 x-4)^{2}}=\frac{(5 x-4) \cos (x)-5 \sin (x)}{(5 x-4)^{2}}
$$

4. (4 points) The function $F(t)$ models the temperature in degrees Celsius of a cabin t minutes after a wood stove has been lit.
(a) Interpret $F(20)=5$ in the context of the problem.

Twenty minutes after the stove is lit, the temperature in the cabin is $5^{\circ} \mathrm{C}$.
(b) Interpret $F(20)=1$ in the context of the problem.

Twenty minutes after the stove is lit, the temperature in the cabin is increasing at a rate of $1^{\circ} \mathrm{C}$ per minute.

