_____ / 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Find the derivatives.

a.
$$G(x) = \int_{0}^{x} \sqrt{1+2t^{2}} dt$$
 $G'(x) = \sqrt{1+2x^{2}}$
b. $H(x) = \int_{1}^{x^{3}} 8\sin\left(\frac{1}{t}\right) dt$ $H'(x) = 8\sin\left(\frac{t}{x^{3}}\right) \cdot (3x^{2})$
 $= 24x^{2} \sin(x^{3})$

- **2.** [6 points] The velocity of a particle moving along a straight line is given by $v(t) = t^2 1$ where $0 \le t \le 2$ is measured in seconds and v is measured in meters per second.
 - **a**. Find the **displacement** of the particle between t = 0 and t = 2.

$$\int_{0}^{2} (t^{2}-1) dt = \frac{1}{3}t^{3}-t \Big]_{0}^{2} = (\frac{1}{3}2^{3}-2) - (0) = \frac{1}{3}t^{3} - \frac{1}{3}t^{3} = \frac{2}{3}t^{3}$$

b. Find the distance traveled of the particle between
$$t = 0$$
 and $t = 2$.

$$\int_{-1}^{2} \int_{0}^{2} v(t) dt = -\int_{0}^{1} (t^{2}-1) dt + \int_{1}^{2} (t^{2}-1) dt = -\left[\frac{1}{3}t^{2}-t\right]_{0}^{1} + \left[\frac{1}{3}t^{2}-t\right]_{0}^{2}$$

$$= -\left(\left(\frac{1}{3}-1\right)-0\right) + \left(\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-1\right)\right) = \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \frac{4}{3} = 2m$$

c. Does the problem contain sufficient information to determine the position of the particle at time t = 2? If so, determine the position. If not, explain why not.

1

ſx **3.** [4 points] Use the graph of f(x) (below) to answer

questions about
$$A(x) = \int_0^x f(t) dt$$
.
a. $A(0) = \int_0^x f(t) dt = 0$
b. $A(4) = \int_0^4 f(t) dt = 6$

- **c**. At x = 3, is A(x) increasing, decreasing, increasing. (because f(t) 70) or neither?
- 4. [10 points] Evaluate the definite integrals below.

a.
$$\int_{1}^{3} (2-6x^{2}) dx = 2x - 2x^{3} \int_{1}^{3} = (2 \cdot 3 - 2 \cdot 3) - (2 \cdot 1 - 2 \cdot 1)$$
$$= (6 - 54) - (2 - 2) = -48$$

$$b \int_{0}^{1} \sin(5x) dx = -\frac{1}{5} \cos(5x) \bigg|_{0}^{2} = -\frac{1}{5} \left(\cos(5) - \cos(5) \right)$$

$$= -\frac{1}{5} \left(\cos(5) - 1 \right) = \frac{1}{5} \left(1 - \cos(5) \right)$$

$$c \int_{0}^{2} \frac{x^{2}}{\sqrt{1 + x^{3}}} dx = \int_{1}^{9} \frac{\frac{1}{3} du}{\sqrt{u}} = \frac{1}{3} \int_{1}^{9} \frac{-\frac{1}{2}}{u} du = \frac{1}{3} \cdot \frac{7}{7} u^{\frac{1}{2}} \bigg|_{1}^{9}$$

$$let u = 1 + x^{3}$$

$$du = 3x^{2} dx = \frac{2}{3} \left(9^{\frac{1}{2}} - \frac{1}{1} \right) = \frac{2}{3} \left(3 - 1 \right) = \frac{4}{3}$$

$$x = 0, u = 1$$

$$x = 2, u = 9$$

UAF Calculus I

X