Name: _

____ / 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [11 points] An open box is to be constructed by cutting squares out of the four corners of a 3 foot by 3 foot piece of cardboard and folding up the sides. (See the diagram. Note that the box will not have a lid, and the height of the box will be *x* feet.)

a. Write an equation for the **volume** of the box in terms of the variable *x*.

b. Determine the **dimensions** of the box with the largest volume. Show your work, and use calculus to **justify** that your answer is the maximum. Include units in your final answer. An answer with no clear justification will not receive full credit.

Dimensions: length: ______ width: ______ height: _____

April 4, 2024

2. [8 points] Evaluate the following limits. You must show your work to earn full credit. If you apply L'Hopital's Rule, you should indicate this.

a.
$$\lim_{x \to 0} \frac{3e^x - 3x - 3}{x^2}$$

b.
$$\lim_{x \to +\infty} x \sin\left(\frac{1}{x}\right)$$

3. [6 points] Evaluate the following indefinite integrals.

a.
$$\int (x^{3/2} + \sin(x) + 5e^x) dx$$

b.
$$\int \left(\sec^2(x) + \frac{x+1}{x}\right) dx$$