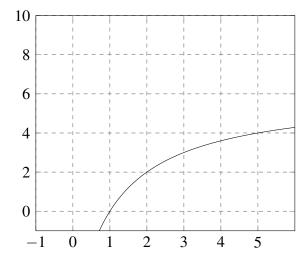
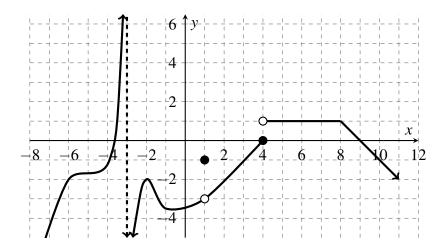
Name: _____

_ / 25


There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. **Show all work for full credit.**

- **1. [11 points]** Let P(2,2) be a point on the graph of $f(x) = \frac{6x-6}{x+1}$.
 - **a**. Find the slope of the secant line passing through P and the point Q(1, f(1)).
 - **b.** Find the slope of the secant line passing through P and the point Q(3, f(3)).
 - **c**. The table below lists the slope of the secant line passing through the point P and the point Q(x, f(x)) for several values of x.


X	1.9	1.99	1.999	2.001	2.01	2.1
` /	1.8621					
m_{sec}	1.3793	1.3378	1.3338	1.3328	1.3289	1.2903

Use the information in the table to estimate the slope of the tangent line to f(x) at the point P(2,2).

- **d**. Use the slope from part (c) above to write an equation of the tangent line at point *P*.
- **e**. Below is a sketch of the graph of $f(x) = \frac{6x-6}{x+1}$. Sketch the tangent line to the graph at the point *P*.

2. [9 points] Use the graph of the function of f(x) to answer the following questions. Give the most complete answer; if the limit is infinite, indicate that with ∞ or $-\infty$. If a value does not exist, write DNE.

a.
$$f(-2) =$$

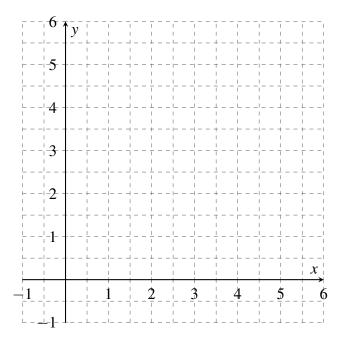
b.
$$f(1) =$$

c.
$$f(4) =$$

d.
$$\lim_{x \to -3} f(x) =$$
 e. $\lim_{x \to -2} f(x) =$ **f.** $\lim_{x \to 1} f(x) =$

e.
$$\lim_{x \to a} f(x) =$$

f.
$$\lim_{x \to 1} f(x) =$$


g.
$$\lim_{x \to A^+} f(x) =$$

h.
$$\lim_{x \to 4^{-}} f(x) =$$

g.
$$\lim_{x \to 4^+} f(x) =$$
_____ **h**. $\lim_{x \to 4^-} f(x) =$ ____ **i**. $\lim_{x \to 4} f(x) =$ _____

3. [5 points] On the axes below, sketch a graph satisfying all of the properties listed below.

$$\lim_{x \to 1^{-}} f(x) = 2, \quad \lim_{x \to 1^{+}} f(x) = 3, \quad f(1) = 5, \quad \lim_{x \to 4} f(x) = 5, \quad f(4) = 0$$

