Name: \qquad
\qquad / 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [12 points] Evaluate the following limits. If a value does not exist, write DNE. You must show work to receive full credit.
a. $\lim _{x \rightarrow 3} \frac{2 x^{2}-6 x}{x^{2}+x-12}$
b. $\lim _{x \rightarrow 0} \frac{x^{3}-4 x}{(1+\sin x) \cos x}$
c. $\lim _{x \rightarrow 2} \frac{\sqrt{7+x}-3}{x-2}$
2. [4 points] Given $\lim _{x \rightarrow 10} f(x)=2$ and $\lim _{x \rightarrow 10} g(x)=-5$, evaluate $\lim _{x \rightarrow 10} 2\left(\frac{x+1}{f(x)+g(x)}\right)$ using limit laws.
3. [5 points] Let $f(x)=\left\{\begin{array}{ll}(x-1)^{2} & x<0 \\ e^{x} & x \geq 0\end{array}\right.$.
a. Find $\lim _{x \rightarrow 0^{-}} f(x)$.
b. Find $\lim _{x \rightarrow 0^{+}} f(x)$.
c. What is $f(0)$?
d. Use your answers to parts (a), (b) and (c) to justify whether $f(x)$ is or is not continuous at $x=0$. (Your answer should be a complete sentence.)
4. [4 points] Use the Intermediate Value Theorem to show that $f(x)=\sin (2 x)-\cos (3 x)=0$ for some x-value on the interval $(0, \pi)$.
