Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] Use the limit definition (given below) of the derivative to find the derivative of $f(x)=\frac{2}{x^{2}}$. No credit will be awarded for a solution that does not use the definition below. Show all your work clearly, step by step, using correct notation.

$$
f^{\prime}(x):=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

2. [5 points] The graph of $f(x)$ is shown below. On the other set of axes, sketch the graph of $f^{\prime}(x)$. If there are any asymptotes, draw them with dashed lines. Use open circles to show points where the derivative is not defined, if any. (You are not given values on the y-axis; I am interested in the correct shape/holes/asymptotes of the derivative, not the specific values.)

3. [6 points] Use the derivative rules to find the derivative for each function below. Do not simplify your answer. Show work so someone else can follow your thinking.
a. $f(x)=(\cos x)(\sqrt{x}-2 x)$

$$
f^{\prime}(x)=
$$

b. $g(x)=\frac{x^{3}-2 x+1}{x}$

$$
g^{\prime}(x)=
$$

4. [6 points] For the function $F(x)=x^{3}-\sin x$, find $F^{\prime}(x), F^{\prime \prime}(x)$, and $F^{\prime \prime \prime}(x)$.
$F^{\prime}(x)=$
$F^{\prime \prime}(x)=$
$F^{\prime \prime \prime}(x)=$
