Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [10 points] (Related Rate Problem) A spherical snowball is melting so that its volume is decreasing at a constant rate of $4 \pi \mathrm{~cm}^{3} / \mathrm{min}$. Use this information to answer the following questions.
a. How fast is the radius of the snowball decreasing when the radius is 8 cm ? Include units in your answer. (Use the fact that the volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$.)
b. How fast is the surface area of the snowball decreasing when the radius is 8 cm ? Include units in your answer. (Use your answer in part (a) and that the surface area of a sphere is given by $S=4 \pi r^{2}$.)
2. [7 points] (Linear Approximation and Differentials) Let $f(x)=x^{3}-\ln (x)$.
a. Find the linear approximation $L(x)=f(a)+f^{\prime}(a)(x-a)$ to $y=f(x)$ at $a=1$.
b. Use your linear approximation to estimate $f\left(\frac{3}{2}\right)$.
3. [8 points] Let $h(x)=4 x^{3}-3 x^{4}+6$.
a. Find all critical points for $h(x)$.
b. Determine the absolute maximum and absolute minimum of $h(x)$ on the interval $[-1,2]$ or state that none exist. You must show your work to receive full credit. See the answer-blank below.
\qquad
minimum value of $h(x)$: \qquad
