Name: Key

_____/ 25

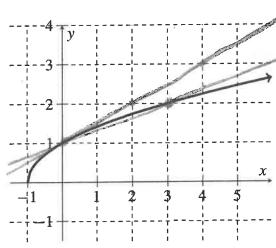
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

- 1. [10 points] Let P(0,1) be a point on the graph of $f(x) = \sqrt{x+1}$.
 - a. Find the slope of the secant line passing through P and the point Q(3, f(3)). f(3) = 2

$$m = \frac{2-1}{3-0} = \frac{1}{3}$$

b. The table below lists the slope (m_{sec}) of the secant line passing through the point P and the point Q(x, f(x)) for several values of x.

x	-1	-0.1	-0.01	0.01	0.1	1
f(x)	0	0.9487	0.9950	1.0050	1.0488	1.4142
m _{sec}	1.0	0.5132	0.5013	0.4988	0.4881	0.4142


Use the information in the table to estimate the slope of the tangent line to f(x) at the point P(0,1).

$$m=\frac{1}{2}$$

c. Use the slope from part (b) above to write an equation of the tangent line at point P(0,1).

$$y-1 = \frac{1}{2}(x-0) \Rightarrow y = \frac{1}{2}x + 1$$

d.

tungent line

Left is a sketch of the graph of $f(x) = \sqrt{x+1}$.

secont line

Sketch and label the tangent line to the graph at the point P(0,1).

Sketch and label the secant line between P(0,1) and Q(3, f(3)).

2. [5 points] A professional cyclist is riding along a straight road. For the first minute, the distance in feet that the cyclist has traveled after t seconds is given by the function $p(t) = \frac{1}{2}t^2 + t$. Find the average velocity of the cyclist between t = 2 and t = 4 seconds. Include units with your answer.

average velocity =
$$m_{sec} = \frac{p(4) - p(2)}{4 - 2} = \frac{12 - 4}{2} = \frac{8}{2} = 4$$
 ft sec

3. [8 points] Evaluate the expressions below. Assume all angles are measured in radians.

$$\mathbf{a.} \ \cos(\pi/4) = \ \frac{\mathbf{Jz}}{2}$$

b.
$$\sin(7\pi/6) = -\frac{1}{2}$$

c.
$$\tan(\pi/3) = \frac{3}{1} = \sqrt{3}$$

d.
$$\sin(-\pi/2) = -1$$

4. [2 points] Use the right triangle below, with side lengths 12, 5, and 13, to evaluate the expressions.

a.
$$\cot(\theta) = \frac{12}{5}$$

b.
$$sec(\theta) = \frac{13}{12}$$