/ 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [12 points] Find the derivative of each function. You do not need to simplify your answers.

**a.** 
$$y = 3x^3 + 4e^x - 5\ln(3)$$

$$\frac{dy}{dx} = \left[ 9x^2 + 4e^x + 0 \right]$$

**b.** 
$$f(x) = \arcsin(x^3)$$

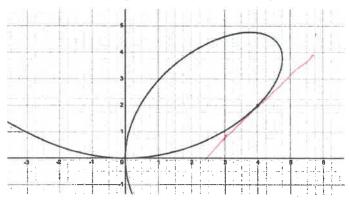
$$f'(x) = \sqrt{1 - (x^3)^2} + 3x^2$$

$$\mathbf{c.} \ g(x) = \ln\left(\frac{x^5}{\cos(x)}\right) = \operatorname{Ln}(x^5) - \operatorname{Ln}(\cos x) = 5\operatorname{Ln}x - \operatorname{Ln}(\cos x)$$

$$q'(x) = \frac{5}{x} - \frac{1}{\cos x}, (-\sin x) = \frac{5}{x} + \tan x$$

**d.** 
$$h(x) = 5\sec(e^x) + \ln(e^x) = 5\sec(e^x) + x^2$$

$$h'(x) = \left[ 5 \sec(e^x) \tan(e^x) \cdot e^x + 1 \right]$$


2. [4 points] Determine if the functions  $f(x) = \ln(2x)$  and  $g(x) = \ln(3x)$  have the same derivative. Justify your answer.

$$f'(x) = \frac{1}{2x} \cdot 2 = \frac{1}{x}$$

$$f'(x) = \frac{1}{2x} \cdot 2 = \frac{1}{x}$$
  $g'(x) = \frac{1}{3x} \cdot 3 = \frac{1}{x}$ 

Yes, they have the same derivative.

3. [9 points] The graph of  $x^3 + y^3 = 9xy$  is given below.



a. Calculate 
$$\frac{dy}{dx}$$
.  $\frac{d}{dx} \left[ x^3 + y^3 \right] = \frac{d}{dx} \left[ 9xy \right]$ 

$$3x^2 + 3y^2$$
,  $\frac{dy}{dx} = 9y + 9x$ ,  $\frac{dy}{dx}$ 

$$3y^2 \frac{dy}{dx} - 9x \frac{dy}{dx} = 9y - 3x^2$$

$$\frac{dy}{dx} = \frac{q_y - 3x^2}{3y^2 - q_x}$$

**b.** Use  $\frac{dy}{dx}$  to find the **slope** of the tangent line to the curve at (4,2). Simplify your answer.

$$\frac{\partial y}{\partial x} = \frac{9.2 - 3.16}{3.4 - 9.4} = \frac{18 - 48}{12 - 36} = \frac{-30}{-24} = \frac{5}{4}$$

**4.** [2 points] BONUS: Given the function  $f(x) = (\arctan x)^x$ , find f'(x). Let y = f(x)

$$L_{ny} = L_n((arctanx)^x) = x L_n(arctanx)$$

$$\frac{d}{dx} \text{ both sides} \frac{1}{y} \cdot \frac{dy}{dx} = Ln(\arctan x) + x \cdot \frac{1}{\arctan x} \cdot \frac{1}{1 + x^2}$$

$$\frac{dy}{dx} = y \left( \ln(\arctan x) + \frac{x}{(1+x^2)\arctan x} \right) = \left( \arctan x \right)^x \left[ \ln(\arctan x) + \frac{x}{(1+x^2)\arctan x} \right]$$