There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [11 points] Let $g(x) = \frac{3}{2}x^4 - 3x^3$. Note that we have the following:

$$g'(x) = 6x^3 - 9x^2$$

$$g''(x) = 18x^2 - 18x$$

You must show your work for all parts to receive credit!

a. Determine the intervals where g is increasing and where g is decreasing.

 $3 \times^{2} (2 \times -3) = 0$ X=0, X= 3

g(x)=0 $6x^3-9x^2=0$ $3x^2=0$ $3x^2=$

b. Find the x values where any local maxima occur and where any local minima occur.

local max: none
local min pt x = 3

X=0, X=1

c. Find the intervals where g is concave up and where $g = \frac{1}{2} (x) = 0$ $18x^2 - 18x = 0$

d. Find the x values where any inflection points occur.

X=0, X=1

v-1

2. [8 points] Evaluate the following limits. Show your work!

a.
$$\lim_{x \to -\infty} \frac{x^2 + 1}{x^2 - 2x^3} = \frac{1}{x} \frac{m}{x^2 - 2x^3} = \frac{1}{x^3} \frac{m}{x^3} + \frac{1}{x^3} = \frac{1}{x^3} = \frac{1}{x^3} + \frac{1}{x^3} = \frac{1}{x^3} = \frac{1}{x^3} + \frac{1}{x^3} = \frac{1}{x^3} =$$

b.
$$\lim_{x \to \infty} \frac{4x - 2}{\sqrt{5x^2 - 4}} = \lim_{x \to \infty} \frac{4x - 2}{\sqrt{(\frac{1}{x})}}$$

3. [6 points] Based on the graph of the function f(x) below, determine whether each value is positive, negative, zero, or undefined. You do not need to show your work.

a.
$$g'(1) = C'$$

b.
$$g''(1) > 0$$

c.
$$g'(3) > 0$$

d.
$$g''(3) = O'$$

e.
$$g'(5) = 0$$

f.
$$g''(5) < 0$$