Name: ____

_____/ 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points] Find the radius *r* and height *h* of the cylinder with surface area 24π that has the largest possible volume. The formulas for the volume *V* and surface area *S* are given below.

 $V = \pi r^2 h, \qquad S = 2\pi r^2 + 2\pi r h$

a. State the value that you want to maximize/minimize.

b. Write the value from part (a) as a function of a single variable.

c. Answer the original question and use calculus to justify your answer.

April 3, 2025

2. [8 points] Use L'Hôpital's Rule to evaluate the limits below. Indicate your use of L'Hôpital's Rule with $\stackrel{h}{=}$ or $\stackrel{L'H}{=}$ or something similar. (Be sure to verify explicitly that L'Hôpital's Rule applies!).

a.
$$\lim_{x \to 1^+} \frac{x + \cos(\pi)}{\ln(x)}$$

b. $\lim_{x\to 0^+} x^x$

3. [8 points] Evaluate the following antiderivatives (aka indefinite integrals).

a.
$$\int (x^3 - 4e^x - \cos(x) + \ln(2)) dx$$

b.
$$\int \frac{x^{3.6} + \sqrt{x}}{x^2} dx$$