Name: ____

Solve the following equations for *x* or state that none exist.

1.
$$5e^{x} - 2 = 0$$

2. $5e^{x} + 4 = 0$
3. $5\ln(x) - 6 = 0$
4. $5\ln(x) + 7 = 0$

This page contains information and techniques you will need for Sections 4.5 and 4.6.

1. Write in your own words how to find the critical numbers of a function f(x) and why they are important.

2. Draw a graph of a function f(x) with domain (-∞,∞) such that
(i) f'(a) = f'(b) = 0 and f'(c) is undefined, and
(i) f has a local minimum at x = a, a local maximum at x = c and neither at x = b.

3. Draw a graph of a function f(x) with domain $(-\infty,\infty)$ such that

(a)
$$f(x) < 0$$
 and $f'(x) > 0$.
(b) $f'(x) < 0$ and $f''(x) > 0$.

Math 251: Section 4.5 & 4.6 Homework Help

4. For each function below, find (a) its domain and (b) all its critical points.

(a)
$$f(x) = x^3 - 2x^2$$

(b)
$$f(x) = x^{1/5}$$

(c)
$$f(x) = \arctan(x)$$

(d)
$$f(x) = \frac{x^2}{x^2 - 4}$$
 (Note: $f'(x) = \frac{-8x}{(x^2 - 4)^2}$.)

(e)
$$f(x) = e^{(1-x)^2}$$

(f)
$$f(x) = \sqrt{x^2 - 4}$$

Math 251: Section 4.5 & 4.6 Homework Help

Recitation Week 9

5. For each derivative below, determine the intervals for which that derivative is positive and negative.

(a)
$$f'(x) = x^{-4/5}$$

(b)
$$y'' = \frac{8(3x^2+4)}{(x^2-4)^3}$$

(c)
$$g'(x) = 3x^2e^{2x} + 2x^3e^{2x}$$

Math 251: Section 4.5 & 4.6 Homework Help

6. Write a formula for a function f(x) such that f(x) has asymptotes x = 1, x = 4 and y = 0.

7. Give an example of a graph with two different horizontal asymptotes.

8. Evaluate each limit below.

(a)
$$\lim_{x \to 2^+} \frac{5}{x-2}$$

(b) $\lim_{x \to 2^-} \frac{5}{x-2}$
(c) $\lim_{x \to 2} \frac{5}{x-2}$
(d) $\lim_{x \to \infty} \frac{5}{x-2}$
(e) $\lim_{x \to -\infty} \frac{5}{x-2}$
(f) $\lim_{x \to \infty} \left(8 + \frac{5}{x-2}\right)$
(g) $\lim_{x \to \infty} \left(x + \frac{5}{x-2}\right)$