RECITATION: WEEK 5

1. TYPE: Secant lines and tangent lines. Let f(z) =1+ 2. = | 4= Y x

(a) Find the slope of the secant line between P(1, f(1) and @ = (2, f(2)).
(b) Write an equation of the tangent line to the graph of f(z) at x = 2.
(c) Sketch f(z), the tangent line and the secant line on the same axes.

(d) If f represented position and = represented time, which of the calculations above would be
average velocity and which would be instantaneous velocity?
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2. TYPE: Definition of the derivative.

7 (a) State the definition of the derivative.

(b) Use the definition of the derivative to find the derivative of f(z) = v/3z. No credit will be
given for answers not using the definition. Points will be deducted for poorly written an-
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3. TYPE: Derivative as rate of change. The number of bacteria after ¢ hours in a controlled laboratory
setting is given by the function n = f(¢) where n is the number of bacteria and ¢ is measured in
hours.

(a) Suppose f'(5) = 2000. What are the units of the derivative?
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(b) In the context of the problem, explain what f/(5) = 2000 means using complete sentences.
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(c) If f(5) = 40,000, how would you estimate f(7) given the available information?

£ e 0000+ 2 (2000)= H000 byuctian.

4. TYPE: Evaluating limits. Evaluate the limits below. Justify your answer with words and/or alge-
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5. TYPE: Position, Velocity, Acceleration

A particle is moving back and forth along a straight line. The position function of a particle is

given by s(t) = 1t — 412 + 12t where ¢ is measured in seconds and s in meters.

(a) What is the velocity function of the particle?

VH=S D=t -sc +12
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(b) What is the acceleration function of the particle?
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7. TYPE: Derivatives

Find the derivatives for each function below. You do not need to simplify but you must use paren-
theses correctly.
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8. TYPE: Graphical Limits

For the function f(z) whose graph is given below, state the value of each quantity if it exists.
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9. TYPE: Graphical Contintuity & Differentiability
A graph of the function f(x) is displayed below.

~ 6 1Y (a) From the graph of f, state the numbers at
‘ which f is discontinuous and why.
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(b) From the graph of f, state the numbers at
which f fails to be differentiable and why:.
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10. TYPE: One and Two Sided Limits X= O Corner

Given f(z) = {° . % *find lim f(z) or explain why this limit does not exst.
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11. TYPE: Intermediate Value Theorem
Using complete sentences, use the Intermediate Value Theorem to show that there is a root of the
equation e” = 3 — 2z in the interval (0, 1).
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