1. TYPE: Secant lines and tangent lines. Let $f(x)=1+\frac{4}{x} \cdot=1+4 x^{-1}$
(a) Find the slope of the secant line between $P(1, f(1)$ and $Q=(2, f(2))$.
(b) Write an equation of the tangent line to the graph of $f(x)$ at $x=2$.
(c) Sketch $f(x)$, the tangent line and the secant line on the same axes.
(d) If f represented position and x represented time, which of the calculations above would be average velocity and which would be instantaneous velocity?

$$
\begin{aligned}
& f^{\prime}(x)=-4 x^{-2} \\
& f(1)=1+\frac{4}{1}=5 \\
& f(2)=1+\frac{4}{2}=3 \\
& f^{\prime}(2)=\frac{-4}{2^{2}}=-1
\end{aligned}
$$

(a) $m_{\sec }=\frac{5-3}{1-2}=-2$
(b) $m_{\text {tan }}=-1$, point $Q(2,3)$
line: $y-3=-1(x-2)$ or $y=5-x$

(d) (a) $=$ average velocity
(b) = instantaneous velroits
2. TYPE: Definition of the derivative.
\rightarrow (a) State the definition of the derivative.
(b) Use the definition of the derivative to find the derivative of $f(x)=\sqrt{3 x}$. No credit will be given for answers not using the definition. Points will be deducted for poorly written answers.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{3 x+3 h}-\sqrt{3 x}}{h} \cdot \frac{(\sqrt{3 x+3 h}+\sqrt{3 x})}{(\sqrt{3 x+3 x}+\sqrt{3 x})}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{3 x+3 h-3 x}{h(\sqrt{3 x+3 h}+\sqrt{3 x}}=\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{3 x+3 h}+\sqrt{3}} \\
& =\lim _{h \rightarrow 0} \frac{3}{\sqrt{3 x+3 h}+\sqrt{3 x}}=\frac{3}{\sqrt{3 x}+\sqrt{3 x}}=\frac{3}{2 \sqrt{3 x}}
\end{aligned}
$$

3. TYPE: Derivative as rate of change. The number of bacteria after t hours in a controlled laboratory setting is given by the function $n=f(t)$ where n is the number of bacteria and t is measured in hours.
(a) Suppose $f^{\prime}(5)=2000$. What are the units of the derivative?
\#bacteria/hours
(b) In the context of the problem, explain what $f^{\prime}(5)=2000$ means using complete sentences. Five hours after the experiment started, the population of bacteria is increasing at a rate of 2000 bactevia/hr.
(c) If $f(5)=40,000$, how would you estimate $f(7)$ given the available information?

$$
f(7) \approx 40000+2(2000)=44000 \text { bacteria. }
$$

4. TYPE: Evaluating limits. Evaluate the limits below. Justify your answer with words and/or algabra.
(a) $\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-x-12}=\lim _{x \rightarrow-3} \frac{x(x+3)}{(x+3)(x-4)}=\lim _{x \rightarrow-3} \frac{x}{x-4}=\frac{-3}{-7}=\frac{3}{7}$
(b) $\lim _{x \rightarrow 1^{+}} \ln \left(\frac{5-x^{2}}{1+x}\right)=\ln \left(\frac{5-1}{1+1}\right)=\ln \left(\frac{4}{2}\right)=\ln (2)$
(c) $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}}{(x-4)^{5}}=-\infty$
as $x \rightarrow 4^{-}$(\#'s like $\left.3.9,3.99 \ldots\right)$
$\sqrt{x} \rightarrow 4$ and $(x-4)^{5} \rightarrow 0^{-}$
(d) $\lim _{x \rightarrow 5} \frac{\frac{1}{x}-\frac{1}{5}}{x-5}=\lim _{x \rightarrow 5}\left(\frac{1}{x-5}\right)\left(\frac{1}{x}-\frac{1}{5}\right)=\lim _{x \rightarrow 5}\left(\frac{1}{x-5}\right)\left(\frac{5-x}{5 x}\right)=\lim _{x \rightarrow 5} \frac{-(x-5)}{(x-5)(5 x)}=\lim _{x \rightarrow 5} \frac{-1}{5 x}$ $=-\frac{1}{25}$
(e) $\lim _{x \rightarrow 7}\left(x+\frac{x-7}{\sqrt{x}-\sqrt{7}}\right)=7+\lim _{x \rightarrow 7} \frac{(\sqrt{x}-\sqrt{7})(\sqrt{x}+\sqrt{7})}{\sqrt{x}-\sqrt{7}}$

$$
=7+\lim _{x \rightarrow 7} \sqrt{x}+\sqrt{7}=7+2 \sqrt{7}
$$

5. TYPE: Position, Velocity, Acceleration

A particle is moving back and forth along a straight line. The position function of a particle is given by $s(t)=\frac{1}{3} t^{3}-4 t^{2}+12 t$ where t is measured in seconds and s in meters.
(a) What is the velocity function of the particle?

$$
V(t)=s^{\prime}(t)=t^{2}-8 t+12
$$

(b) What is the acceleration function of the particle?

$$
a(t)=s^{\prime \prime}(t)=2 t-8
$$

(c) At $t=3$, is the particle speeding up or slowing down? (Justify!)

$$
\begin{aligned}
& V(3)=3^{2}-8(3)+12=-3 \\
& a(3)=2 \cdot 3-8=-2
\end{aligned}
$$

Ans Speeding up.
Because velocity and acceleration have the same sign.
(d) When does the particle turn around?

Look for $V=0$.
So $t=6 \mathrm{~s}$ and $t=2 \mathrm{~s}$

$$
0=t^{2}-8 t+12=(t-6)(t-2)
$$

(e) When is the particle moving to the right?

6. TYPE: Derivative as Function

Using the graph of $f(x)$ below, sketch the graph of $f^{\prime}(x)$.

Ans The particle is moving to the right when $t<2$ or $t>6$.
7. TYPE: Derivatives

Find the derivatives for each function below. You do not need to simplify but you must use parentheses correctly.
(a) $g(x)=\frac{2}{x}-3\left(\frac{x^{2}+1}{5}\right)+2 \sqrt{2}=2 x^{-1}-\frac{3}{5} x^{2}-\frac{3}{5}+2 \sqrt{2}$

$$
g^{\prime}(x)=-2 x^{-2}-\frac{6}{5} x
$$

(b) $h(x)=\cos (x)-\overbrace{\sqrt{x} \sin (x)}^{\text {product rule! }}=\cos (x)-x^{\frac{1}{2}} \sin (x)$
$h^{\prime}(x)=-\sin (x)-\frac{1}{2} x^{-1 / 2} \sin (x)-x^{\frac{1}{2}} \cos (x)$
(c) $k(x)=x^{2}-\frac{x^{2}+2}{5+\sin (x)}$

$$
K^{\prime}(x)=2 x-\frac{(5+\sin (x))(2 x)-\left(x^{2}+2\right)(\cos x)}{(5+\sin (x))^{2}}
$$

8. TYPE: Graphical Limits

For the function $f(x)$ whose graph is given below, state the value of each quantity if it exists.

(a) $\lim _{x \rightarrow-3} f(x)=\underline{2}$
(d) $\lim _{x \rightarrow 1^{+}} f(x)=3$
(g) $\lim _{x \rightarrow 4^{-}} f(x)=\square \infty$
(b) $f(-3)=$

(c) $\lim _{x \rightarrow 1^{-}} f(x)=\square$
(e) $\lim _{x \rightarrow 1} f(x)=D \mathrm{DN}$
(h) $\lim _{x \rightarrow 4^{+}} f(x)=\underline{+\infty}$
9. TYPE: Graphical Contintuity \& Differentiability A graph of the function $f(x)$ is displayed below.

10. TYPE: One and Two Sided Limits
(a) From the graph of f, state the numbers at which f is discontinuous and why.

$$
\begin{array}{ll}
x=-4 & \text { no limit } \\
x=2 & \lim _{x \rightarrow 2} f(x) \neq f(2) \\
x=4 & f(4) D N E
\end{array}
$$

(b) From the graph of f, state the numbers at which f fails to be differentiable and why.
$x=-4,2,4$: no limit
$x=0$ Corner Given $f(x)=\left\{\begin{array}{ll}3 & x \geq 4 \\ \frac{3 x-12}{|x-4|} & x<4\end{array}\right.$ find $\lim _{x \rightarrow 4} f(x)$ or explain why this limit does not exist. The limit does not exist because

$$
\begin{aligned}
& \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}} 3=3 \\
& \lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} \frac{3(x-4)}{|x-4|}=-3
\end{aligned}
$$ the left-and right-hand limits are not the same. as $x \rightarrow 4^{-}$(\#'s like $\left.3.9,3.99 ..\right)$

11. TYPE: Intermediate Value Theorem Using complete sentences, use the Intermediate Value Theorem to show that there is a root of the equation $e^{x}=3-2 x$ in the interval $(0,1)$.
Let $f(x)=e^{x}-3+2 x$.
When $f(x)=0$, the equation has a solution.
Note that $f(x)$ is continuous.

$$
\begin{aligned}
& \text { Note that } f(x) \text { in } \\
& f(0)=e^{0}-3+2 \cdot 0=1-3=-2 \text { and } f(1)=e^{1}-3+2=e-1>0 \text {. }
\end{aligned}
$$

$$
\text { Since } f(0)<0, f(1)>0 \text {, } f \text { is continuous, the I.V.Thm }
$$

implies there is some x-value in $(0,1)$ where $f(x)=0$.

