Recitation: Week 5

1. TYPE: Secant lines and tangent lines. Let $f(x)=1+\frac{4}{x}$.
(a) Find the slope of the secant line between $P(1, f(1)$ and $Q=(2, f(2))$.
(b) Write an equation of the tangent line to the graph of $f(x)$ at $x=2$.
(c) Sketch $f(x)$, the tangent line and the secant line on the same axes.
(d) If f represented position and x represented time, which of the calculations above would be average velocity and which would be instantaneous velocity?
2. TYPE: Definition of the derivative.
(a) State the definition of the derivative.
(b) Use the definition of the derivative to find the derivative of $f(x)=\sqrt{3 x}$. No credit will be given for answers not using the definition. Points will be deducted for poorly written answers.
3. TYPE: Derivative as rate of change. The number of bacteria after t hours in a controlled laboratory setting is given by the function $n=f(t)$ where n is the number of bacteria and t is measured in hours.
(a) Suppose $f^{\prime}(5)=2000$. What are the units of the derivative?
(b) In the context of the problem, explain what $f^{\prime}(5)=2000$ means using complete sentences.
(c) If $f(5)=40,000$, how would you estimate $f(7)$ given the available information?
4. TYPE: Evaluating limits. Evaluate the limits below. Justify your answer with words and /or algebra.
(a) $\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-x-12}$
(c) $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}}{(x-4)^{5}}$
(e) $\lim _{x \rightarrow 7}\left(x+\frac{x-7}{\sqrt{x}-\sqrt{7}}\right)$
(b) $\lim _{x \rightarrow 1^{+}} \ln \left(\frac{5-x^{2}}{1+x}\right)$
(d) $\lim _{x \rightarrow 5} \frac{\frac{1}{x}-\frac{1}{25}}{x-5}$
5. TYPE: Position, Velocity, Acceleration

A particle is moving back and forth along a straight line. The position function of a particle is given by $s(t)=\frac{1}{3} t^{3}-4 t^{2}+12 t$ where t is measured in seconds and s in meters.
(a) What is the velocity function of the particle?
(b) What is the acceleration function of the particle?
(c) At $t=3$, is the particle speeding up or slowing down?
(d) When does the particle turn around?
(e) When is the particle moving to the right?
6. TYPE: Derivative as Function

Using the graph of $f(x)$ below, sketch the graph of $f^{\prime}(x)$.

7. TYPE: Derivatives

Find the derivatives for each function below. You do not need to simplify but you must use parentheses correctly.
(a) $g(x)=\frac{2}{x}-3\left(\frac{x^{2}+1}{5}\right)+2 \sqrt{2}$
(b) $h(x)=\cos (x)-\sqrt{x} \sin (x)$
(c) $k(x)=x^{2}-\frac{x^{2}+2}{5+\sin (x)}$
8. TYPE: Graphical Limits

For the function $f(x)$ whose graph is given below, state the value of each quantity if it exists.

(a) $\lim _{x \rightarrow-3} f(x)=$ \qquad
(d) $\lim _{x \rightarrow 1^{+}} f(x)=$ \qquad
(g) $\lim _{x \rightarrow 4^{-}} f(x)=$
(b) $f(-3)=$ \qquad (e) $\lim _{x \rightarrow 1} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 1^{-}} f(x)=$ \qquad (f) $f(1)=$
(h) $\lim _{x \rightarrow 4^{+}} f(x)=$
9. TYPE: Graphical Contintuity \& Differentiability A graph of the function $f(x)$ is displayed below.

(a) From the graph of f, state the numbers at which f is discontinuous and why.
10. TYPE: One and Two Sided Limits

Given $f(x)=\left\{\begin{array}{ll}3 & x \geq 4 \\ \frac{3 x-12}{|x-4|} & x<4\end{array}\right.$ find $\lim _{x \rightarrow 4} f(x)$ or explain why this limit does not exist.
11. TYPE: Intermediate Value Theorem

Using complete sentences, use the Intermediate Value Theorem to show that there is a root of the equation $e^{x}=3-2 x$ in the interval $(0,1)$.

