1. Sketch a graph that satisfies all of the conditions:
domain $f=(-\infty, \infty)$,
$f(3)=-1, \quad f^{\prime}(3)=0$
$f^{\prime}(x)<0$ when $x<3, f^{\prime}(x)>0$ when $x>3$,
$f^{\prime \prime}(x)<0$ when $x<0, \quad f^{\prime \prime}(x)>0$ when $x>0$
$\lim _{x \rightarrow-\infty} f(x)=4$
2. Evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}}$
(b) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln (x)$
(c) $\lim _{x \rightarrow 0^{+}}(1+\sin (x))^{\frac{1}{x}}$
3. A function and its first and second derivatives are given below.

$$
f(x)=x^{5 / 3}-5 x^{2 / 3}, \quad f^{\prime}(x)=\frac{5 x-10}{3 x^{1 / 3}}, \quad f^{\prime \prime}(x)=\frac{10 x+10}{9 x^{4 / 3}}
$$

(a) Identify any critical points of $f(x)$.
(b) Find the intervals of increase and decrease, and identify any local maximum or minimum values. Your answer should have the form: " $f(x)$ has a maximum of \qquad at \qquad " or " $f(x)$ has no maxima."
(c) Find the intervals of concavity and any inflection points.
4. The graph of the function $f(x)=\sqrt{\frac{x}{2}+1}$ is shown.

(a) Let $G(x)$ be the square of the distance from the origin to a point on the graph of $y=f(x)$. Write an expression for $G(x)$.
(b) Use the expression for $G(x)$ to find the closest point on the graph $y=f(x)$ to the origin.
(c) Show your result by adding a point, with coordinates, to the graph.
5. A ship passes a lighthouse at $3: 30 \mathrm{pm}$, sailing to the east at 5 mph , while another ship sailing due south at 6 mph passes the same point half an hour later. How fast will the distance between the ships be increasing at $5: 30 \mathrm{pm}$?
6. Use differentials to estimate the amount of paint needed to apply a coat of paint 0.1 cm thick to a hemispherical dome with radius 10 m . Give your final answer with proper units. (Note the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.)
7. Find the linearization of $f(x)=e^{x}$ at $a=0$ and use it to estimate $e^{0.1}$. Express your answer as simplified fraction or decimal.
8. Solve the initial value problem. If the velocity of an object is given by $v(t)=e^{t}+t$, find the position of the object assuming that the initial position of the object is 0 . (That is, $s(0)=0$.)
9. Evaluate the indefinite integral below. Give the most complete answer. $\int\left(5 \sec ^{2}(x)+\frac{1}{x^{5}}\right) d x$.
10. Estimate the area under the curve $f(x)=x^{3}$ and above the x-axis on the interval $[0,2]$ using 4 rectangles and right-hand endpoints. (i.e. Find R_{4}.) Draw a picture to illustrate your computation.
11. Determine the absolute maximum and absolute minimum of $f(t)=\frac{t}{2+2 t^{2}}$ on the interval $[0,2]$.

