Rules:

You have 90 minutes to complete this midterm.
Partial credit will be awarded, but you must show your work.
You may have a single handwritten 3×5 notecard.
Calculators are not allowed.
Place a box around your FINAL ANSWER to each question where appropriate.
Turn off anything that might go beep during the exam.
Good luck!

Problem	Possible	Score
1	10	
2	10	
3	20	
4	12	
5	8	
6	30	
7	10	
Extra Credit	5	
Total	100	

1. (10 points) Find the area between the curves $y=\frac{10}{x+1}$ and $y=10-2 x$ on the interval $[0,4]$. \}

Ans a simplified number.

$$
\begin{aligned}
A= & \int_{0}^{4}(10-2 x)-\left(\frac{10}{x+1}\right) d x=10 x-x^{2}-\left.10 \ln (x+1)\right|_{0} ^{4} \\
& =40-16-10 \ln (5)-(0)=24-10 \ln (5)
\end{aligned}
$$

2. (10 points) Find the surface area of the volume generated when the curve $y=\frac{x^{3}}{3}$ from $x=0$ to $x=2$ is revolved around the x-axis.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
y=\frac{1}{3} x^{3}, y^{\prime}=x^{2} \\
S A
\end{array}=2 \pi \int_{0}^{2} \frac{x^{3}}{3} \cdot \sqrt{1+\left(x^{2}\right)^{2}} d x=\frac{2 \pi}{3} \int_{0}^{2} x^{3}\left(1+x^{4}\right)^{1 / 2} d x \\
\text { let } u=1+x^{4} \\
\left.\begin{array}{l}
d u=4 x^{3} d x \\
\frac{1}{4} d u=x^{3} d x \\
\text { If } x=0, u=1
\end{array}\right\}
\end{array} \quad=\frac{2 \pi}{3} \cdot \frac{1}{4} \int_{1}^{17} u^{1 / 2} d u=\left.\frac{\pi}{6} \cdot \frac{2}{3} \cdot u^{3 / 2}\right|_{1} ^{17} \\
&
\end{aligned} \quad=\frac{\pi}{9}\left((17)^{3 / 2}-1\right) .
$$

3. (20 points) Let R be the region in the first quadrant bounded by $y=\sqrt{x}, y=0$, and $x=16$.
(a) Sketch the region R on the given graph.

$$
\begin{gathered}
y=\sqrt{x} \\
y^{2}=x
\end{gathered}
$$

(b) Use disks/washers to completely set up, but not evaluate, a definite integral for the volume of the solid of revolution formed by rotating the region in part (a) around the \mathbf{x}-axis.

(c) Use shells to completely set up, but not evaluate, a definite integral for the volume of the same solid of revolution formed by rotating the region in part (a) around the x-axis. turizontal slice

$$
: V=2 \pi \int_{0}^{4} y\left(16-y^{2}\right) d y=2 \pi \int_{0}^{4}\left(16 y-y^{3}\right) d x
$$

(d) Use disks/washers to completely set up, but not evaluate, a definite integral for the volume of the solid of revolution formed by rotating the region in part (a) around the \mathbf{y}-axis.
horizatel slice

$$
V=\pi \int_{0}^{4}(16)^{-}-\left(y^{2}\right) d y=\pi \int_{0}^{4}\left(256-y^{4}\right) d y
$$

(e) Use shells to completely set up, but not evaluate, a definite integral for the volume of the same solid of revolution formed by rotating the region in part (a) around the \mathbf{y}-axis.

$$
{ }^{\substack{\text { vertical } \\ \text { axis }}} V=2 \pi \int_{0}^{16} x \cdot \sqrt{x} d x=2 \pi \int_{0}^{16} x^{3 / 2} d x
$$

4. (12 points) A spring has a natural length of 30 cm (or 0.3 m). It takes a force of 40 N to hold the spring at a length of 40 cm (or 0.4 m).

$$
\begin{aligned}
& \text { (a) What is the spring constant } k \text { in Hooke's Law? } \\
& \begin{array}{rlr}
X=0.4-0.3=0.1 \mathrm{~m} & =K X \\
F=40 \mathrm{~N} & 40 & =K \cdot \frac{1}{10}
\end{array} \quad \$ \text { So } K=400 \\
& \hline
\end{aligned}
$$

(b) How much work is done to stretch the spring to a length of 50 cm (or 0.5 m)? Simplify your answer and include units.

$$
W=\int_{0}^{\substack{\text { answer and in elude unis. }}} 400 x d x=\left.200 x^{2}\right|_{0} ^{\frac{2}{10}}=200\left(\frac{4}{100}\right)=8 \mathrm{~N} \cdot \mathrm{~m} \text { from natural length to. }
$$

7 mus
5. (8 points) Set up but do not evaluate the three integrals needed to compute the center of mass, (\bar{x}, \bar{y}), of the region R bounded by $y=0, x=0, x=2$, and $f(x)=2 e^{x}$. Then, fill in the blanks at the bottom to show how to compute the values of (\bar{x}, \bar{y}).

$$
m=e \int_{0}^{2} 2 e^{x} d x
$$

$$
M_{y}=e \int_{0}^{2} 2 x e^{x} d x
$$

$$
M_{x}=e \int_{0}^{2} \frac{1}{2}\left(2 e^{x}\right)^{2} d x=2 e \int_{0}^{2} e^{2 x} d x
$$

6. (30 points) Evaluate the following indefinite integrals. Show your work and simplify your answers.

$$
\begin{aligned}
& \text { (a) } \int x^{2} e^{x} d x\left\{\begin{array}{l}
u=x^{2} \\
d u=2 x d x
\end{array}\right. \\
& d v=e^{x} d x \\
& =x^{2} e^{x}-2 \int x e^{x} d x \\
& =x^{2} e^{x}-2\left(x e^{x}-\int e^{x} d x\right) \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}+C \\
& =e^{x}\left(x^{2}-2 x+2\right)+C \\
& \text { (b) } \int \sin ^{3}(\theta) \cos ^{2}(\theta) d \theta=\int \sin ^{2} \theta \cos ^{2} \theta \cdot \sin \theta d \theta \\
& =\int\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta \sin \theta d \theta \quad \begin{array}{l}
\text { let } u=\cos \theta \\
\quad d u=-\sin \theta d \theta
\end{array} \\
& =-\int\left(1-u^{2}\right) u^{2} d u=\int\left(u^{4}-u^{2}\right) d u=\frac{1}{5} u^{5}-\frac{1}{3} u^{3}+C \\
& =\frac{1}{5}(\cos \theta)^{5}-\frac{1}{3}(\cos \theta)^{3}+c
\end{aligned}
$$

Math 252: Midterm Exam 1

$$
\begin{aligned}
& \begin{array}{l}
\text { (c) } \int \frac{4-x^{2}}{x^{3}+2 x} d x \\
x\left(x^{2}+2\right)
\end{array}=\int\left(\frac{2}{x}-\frac{3 x}{x^{2}+2}\right) d x \\
& \frac{4-x^{2}}{x^{3}-2 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+2} \quad=2 \ln |x|-\frac{3}{2} \ln \left(x^{2}+2\right)+C \\
& 4-x^{2}=A\left(x^{2}+2\right)+(x)(3 x+C) \\
& x=0: \quad 4=2 A \text {. So } A=2 \\
& -x^{2}=(A+B) x^{2} \text {. So } A+B=-1 \\
& \text { So } B=-3 \\
& o x=C x \text {. So } C=0 \\
& \text { (d) } \int x \sec ^{2}(x) d x \\
& u=x \quad d v=\sec ^{2} x d x \\
& d u=d x \quad v=\tan x \\
& =x \tan x-\int \tan x d x \\
& =x \tan x-\int \frac{\sin x d x}{\cos x} \\
& =x \tan x+\ln |\cos x|+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. (10 points) Evaluate the integral } \int \frac{x^{2}}{\sqrt{4-x^{2}}} d x \text { using trigonometric substitution. You must fully } \\
& \text { simplify your answer. } \\
& \sqrt{4-x^{2}}=2 \cos \theta \\
& \int \frac{x^{2} d x}{\sqrt{4-x^{2}}}=\int \frac{4 \sin ^{2} \theta \cdot 2 \cos \theta d \theta}{2 \cos \theta d \theta}=4 \int \sin ^{2} \theta d \theta \\
& =2\left((1-\cos (2 \theta)) d \theta=2\left(\theta-\frac{1}{2} \sin (2 \theta)\right)+C\right. \\
& =2(\theta-\sin (\theta) \cos (\theta))+C \\
& =2\left[\arcsin \left(\frac{x}{2}\right)-\frac{x}{2} \cdot \frac{\sqrt{4-x^{2}}}{2}\right]+C \\
& =2 \arcsin \left(\frac{x}{2}\right)-\frac{1}{2} \times \sqrt{4-x^{2}}+C
\end{aligned}
$$

Extra Credit (5 points)
(a) Use integration by parts to prove the reduction formula $\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$.

$$
\int(\ln x)^{n} d x \quad \begin{array}{ll}
u=(\ln x)^{n} & d v=d x \\
d u & =n(\ln x)^{n-1} \\
v & =x
\end{array}
$$

$$
=x(\ln x)^{n}-n \int x(\ln x)^{n-1} d x
$$

(b) Use the reduction formula to evaluate $\int(\ln x)^{2} d x$.

$$
\begin{aligned}
& \int(\ln x)^{2} d x=x(\ln x)^{2}-2 \int(\ln x)^{\prime} d x \\
& =x(\ln x)^{2}-2\left(x(\ln x)^{\prime}-\int d x\right)
\end{aligned}
$$

$$
=x(\ln x)^{2}-2 x \ln x+2 x+c
$$

$$
\begin{array}{ll}
\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x)) & \sin (a x) \cos (b x)=\frac{1}{2}(\sin ((a-b) x)+\sin ((a+b) x)) \\
\cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x)) & \sin (a x) \sin (b x)=\frac{1}{2}(\cos ((a-b) x)-\cos ((a+b) x)) \\
\sin (2 \theta)=2 \sin (\theta) \cos (\theta) & \cos (a x) \cos (b x)=\frac{1}{2}(\cos ((a-b) x)+\cos ((a+b) x))
\end{array}
$$

