Math F252

Midterm I

Fall 2023

Name: Solutions

8:45

Rules:

You have 90 minutes to complete this midterm.

Partial credit will be awarded, but you must show your work.

You may have a single handwritten 3×5 notecard.

Calculators are not allowed.

Place a box around your FINAL ANSWER to each question where appropriate.

Turn off anything that might go beep during the exam.

Good luck!

Problem	Possible	Score
1	10	
2	10	
3	20	
4	12	
5	8	
6	30	
7	10	
Extra Credit	5	
Total	100	

1. (10 points) Find the area between the curves $y = \frac{10}{x+1}$ and y = 10 - 2x on the interval [0, 4].

$$A = \int_{0}^{4} (10-2x) - \left(\frac{10}{x+1}\right) dx = 10x - x^{2} - 10 \ln(x+1)$$

$$= 40-16 - 10 \ln(5) - (0) = 24 - 10 \ln(5)$$

2. (10 points) Find the surface area of the volume generated when the curve $y = \frac{x^3}{3}$ from x = 0 to x = 2is revolved around the x-axis.

$$y = \frac{1}{3} \times^{3}, y' = x^{2}$$

$$SA = 2\pi \int_{0}^{2} \frac{x^{3}}{3} \cdot \sqrt{1 + (x^{2})^{2}} dx = \frac{2\pi}{3} \int_{0}^{2} x^{3} (1 + x^{4}) dx$$

$$|x| = \frac{2\pi}{3} \cdot \frac{1}{4} \int_{0}^{17} u^{2} du = \frac{\pi}{6} \cdot \frac{7}{3} \cdot u^{2} \Big|_{1}^{17}$$

$$|x| = \frac{2\pi}{3} \cdot \frac{1}{4} \int_{0}^{17} u^{2} du = \frac{\pi}{6} \cdot \frac{7}{3} \cdot u^{2} \Big|_{1}^{17}$$

$$|x| = \frac{\pi}{4} (17) - 1$$

$$|x| = \frac{\pi}{4} (17) - 1$$

$$= \frac{2\pi}{3} \cdot \frac{1}{4} \int_{1}^{17} u^{2} du = \frac{\pi}{6} \cdot \frac{3}{3} \cdot u^{2} \Big|_{1}^{17}$$

$$=\frac{\pi}{9}\left(\frac{3/2}{(17)^2-1}\right)$$

change direction

- 3. (20 points) Let R be the region in the first quadrant bounded by $y = \sqrt{x}$, y = 0, and x = 16.
 - (a) Sketch the region *R* on the given graph.

(b) **Use disks/washers** to completely set up, but not evaluate, a definite integral for the volume of the solid of revolution formed by rotating the region in part (a) around **the x-axis**.

vertical: $V = \pi \int_{0}^{16} (\sqrt{x}) dx = \pi \int_{0}^{16} x dx$

(c) **Use shells** to completely set up, but not evaluate, a definite integral for the volume of the same solid of revolution formed by rotating the region in part (a) around **the x-axis**.

horizontal 8110 : $V = 2\pi \int_{0}^{4} y (16 - y^{2}) dy = 2\pi \int_{0}^{4} (16y - y^{3}) dx$

(d) **Use disks/washers** to completely set up, but not evaluate, a definite integral for the volume of the solid of revolution formed by rotating the region in part (a) around **the y-axis**.

horizontel $V = \pi \int_{0}^{4} (16)^{2} - (y^{2}) dy = \pi \int_{0}^{4} (256 - y^{2}) dy$

(e) Use shells to completely set up, but not evaluate, a definite integral for the volume of the same solid of revolution formed by rotating the region in part (a) around the y-axis.

vertical axis $V = 2\pi \int_{0}^{16} x \cdot \sqrt{x} dx = 2\pi \int_{0}^{16} x^{3/2} dx$

- 4. (12 points) A spring has a natural length of 30 cm (or 0.3 m). It takes a force of 40 N to hold the spring at a length of 40 cm (or 0.4 m).
 - (a) What is the spring constant k in Hooke's Law?

$$X = 0.4 - 0.3 = 0.1 m$$

 $F = 40 N$

$$F = K \times 5$$
 So $K = 400$

(b) How much work is done to stretch the spring to a length of 50 cm (or 0.5 m)? Simplify your

answer and include units.

W=
$$\int_{0.2}^{0.2} 400 \times dx = 200 \times \left|_{0}^{2} = 200 \left(\frac{4}{100}\right) = 8N \cdot m \right|_{0}^{2} = 8N \cdot m$$

7mw

5. (8 points) Set up but do not evaluate the three integrals needed to compute the center of mass, (\bar{x}, \bar{y}) , of the region R bounded by y = 0, x = 0, x = 2, and $f(x) = 2e^x$. Then, fill in the blanks at the bottom to show how to compute the values of (\bar{x}, \bar{y}) .

$$m = \rho \int_{0}^{2} 2e^{x} dx$$

$$M_y = e \int_0^2 2 \times e^{X} dX$$

$$M_x = e \int_{0}^{2} (2e^{x})^2 dx = 2e \int_{0}^{2} e^{2x} dx$$

$$\overline{x} = \frac{My}{m}$$

$$\overline{y} = \frac{\mathbf{M}\mathbf{x}}{\mathbf{m}}$$

$$\int \sin^3(\theta)\cos^2(\theta)\,d\theta = \int \sin\theta \, \cos\theta \, \cdot \sin\theta \, d\theta$$

$$= \int (1 - \omega s^2 \theta) \cos^2 \theta \sin \theta d\theta \qquad let u = \cos \theta \\ du = -\sin \theta d\theta$$

$$= -\int (1-u^2)u^2 du = \int (u^4 - u^2) du = -\frac{1}{5}u^5 - \frac{1}{3}u^3 + C$$

$$= \frac{1}{5}(\cos\theta) - \frac{1}{3}(\cos\theta) + C$$

(c)
$$\int \frac{4-x^2}{x^3+2x} dx = \int \left(\frac{2}{x} - \frac{3x}{x^2+2}\right) dx$$

$$\frac{4-x^2}{x^3-2x} = \frac{A}{x} + \frac{Bx+C}{x^2+2} = 2 \ln|x| - \frac{1}{x^2}$$

$$-x^{2} = (A+B)x^{2}$$
. So $A+B=-1$
So $B=-3$

(d)
$$\int x \sec^2(x) \, dx$$

$$= x + an x - \int \frac{\sin x \, dx}{\cos x}$$

=
$$2 \ln |x| - \frac{3}{2} \ln (x^2 + 2) + C$$

u=x $dv = Sec^2 x dx$

du=dx V=tenx

7. (10 points) Evaluate the integral $\int \frac{x^2}{\sqrt{4-x^2}} dx$ using trigonometric substitution. You must **fully** simplify your answer.

let
$$x = 2 \sin \theta$$
, $dx = 2 \cos \theta d\theta$
 $\sqrt{4-x^2} = 2 \cos \theta$

$$\int \frac{x^2 dx}{\sqrt{4-x^2}} = \int \frac{4 \sin^2 \theta \cdot 2 \cos \theta d\theta}{2 \cos \theta d\theta} = 4 \int \sin^2 \theta d\theta$$

$$=2\int \left(1-\cos(2\theta)\right)d\theta=2\left(\theta-\frac{1}{2}\sin(2\theta)\right)+C$$

$$=2\left[\arcsin\left(\frac{x}{2}\right)-\frac{x}{2}\cdot\frac{\sqrt{4-x^2}}{2}\right]+C$$

Extra Credit (5 points)

(a) Use integration by parts to prove the reduction formula $\int (\ln x)^n dx = x(\ln x)^n - n \int (\ln x)^{n-1} dx.$

$$u = (\ln x)^n \quad dv = dx$$

$$du = n(\ln x)^{n-1} \quad v = x$$

$$dv = dx$$

$$= x(\ln x)^n - n \int x(\ln x)^{n-1} dx$$

(b) Use the reduction formula to evaluate $\int (\ln x)^2 dx$.

$$\int (\ln x)^2 dx = x (\ln x)^2 - 2 \int (\ln x)^1 dx$$

$$= x(\ln x)^2 - 2(x(\ln x)^1 - \int dx)$$

$$= \times (\ln x)^2 - 2x \ln x + 2x + C$$

$$\sin^2(x) = \frac{1}{2}(1 - \cos(2x)) \qquad \sin(ax)\cos(bx) = \frac{1}{2}(\sin((a-b)x) + \sin((a+b)x))$$

$$\cos^{2}(x) = \frac{1}{2}(1 + \cos(2x)) \qquad \sin(ax)\sin(bx) = \frac{1}{2}(\cos((a-b)x) - \cos((a+b)x))$$

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta) \qquad \cos(ax)\cos(bx) = \frac{1}{2}(\cos((a-b)x) + \cos((a+b)x))$$