Math F252
 Midterm I

Fall 2023

Name: Solutions

Rules:

You have 90 minutes to complete this midterm.
Partial credit will be awarded, but you must show your work.
You may have a single handwritten 3×5 notecard.
Calculators are not allowed.
Place a box around your FINAL ANSWER to each question where appropriate.
Turn off anything that might go beep during the exam.
Good luck!

Problem	Possible	Score
1	10	
2	10	
3	20	
4	12	
5	8	
6	30	
7	10	
Extra Credit	5	
Total	100	

1. (10 points) Find the area between the curves $y=\frac{24}{x+2}$ and $y=12-2 x$ on the interval [0,4]. Your final answer should be a reasonably simplified number.

$$
\begin{aligned}
& \text { 年 } \\
& A=\int_{0}^{4}\left[12-2 x-\left(\frac{24}{x+2}\right)\right] d x \\
& =12 x-x^{2}-\left.24 \ln (x+2)\right|_{0} ^{4} \\
& =48-16-24 \ln (6)+(24 \ln (2)) \\
& =32-24 \ln (6)+24 \ln (2) \\
& =32-24(\ln (6)-\ln (2))=8-24 \ln (3)
\end{aligned}
$$

2. (10 points) Find the surface area of the volume generated when the curve $y=\frac{x^{3}}{3}$ from $x=0$ to $x=2$ is revolved around the x-axis. Your final answer should be a reasonably simplified number.

$$
\begin{aligned}
& y=\frac{1}{3} x^{3}, y^{\prime}=x^{2} \\
& S A=2 \pi \int_{0}^{2} \frac{x^{3}}{3} \cdot \sqrt{1+\left(x^{2}\right)^{2}} d x=\frac{2 \pi}{3} \int_{0}^{2} x^{3}\left(1+x^{4}\right)^{1 / 2} d x \\
& \text { let } \begin{aligned}
u & =1+x^{4} \\
d u & =4 x^{3} d x
\end{aligned} \quad=\frac{2 \pi}{3} \cdot \frac{1}{4} \int_{1}^{17} u^{1 / 2} d u=\left.\frac{\pi}{6} \cdot \frac{2}{3} \cdot u^{3 / 2}\right|_{1} ^{17} \\
& \text { If } x=0, u=1 \\
& =\frac{\pi}{9}\left((17)^{3 / 2}-1\right)
\end{aligned}
$$

3. (20 points) Let R be the region in the first quadrant bounded by $y=x^{2}, y=9$, and $x=0$.
(a) Sketch the region R on the given graph.

(b) For each problem below, set up - but do not evaluate - a definite integral for the volume of the solid of revolution formed by rotating the region R about the given axis using the given method. Your final answer should be in a form that is immediately integrable without any additional algebra.

$$
\begin{aligned}
& \text { vertical i. Axis of rotation: } x \text {-axis, Method: disks/washers. } \\
& \text { slice } \quad V=\int_{0}^{3} \pi\left(9^{2}-\left(x^{2}\right)^{2}\right) d x=\pi \int_{0}^{3}\left(81-x^{4}\right) d x
\end{aligned}
$$

horizon ${ }^{\text {ii }}$ Axis of rotation: x-axis, Method: shells.
horizunth iii. Axis of rotation: y-axis, Method: disks/washers. slice

$$
V=\pi \int_{0}^{9}(\sqrt{y})^{2} d y=\pi \int_{0}^{9} y d y
$$

iv. Axis of rotation: y-axis, Method: shells.

3 vertical $V=2 \pi \int_{0}^{3} x^{3}\left(9-x^{2}\right) d x=2 \pi \int_{0}^{3}\left(9 x-x^{3}\right) d x$
4. (12 points) A spring has a natural length of 30 cm (or 0.3 m). It takes a force of 50 N to hold the spring at a length of 40 cm (or 0.4 m).
(a) What is the spring constant k in Hooke's Law?
$F=K x$ where $F=50$ and $x=0.1 \mathrm{~m}$.

$$
\begin{aligned}
& \text { So } 50=k \cdot \frac{1}{10} \text { or } \\
& k=500
\end{aligned}
$$

(b) How much work is done to stretch the spring to a length of 50 cm (or 0.5 m)? Simplify your

$$
W=\int_{0}^{0.2} 500 x d x=\left.250 x^{2}\right|_{0} ^{2 / 10}=250\left(\frac{1}{25}\right)=10 \mathrm{~N} \cdot \mathrm{~m}
$$

5. (8 points) Set up but do not evaluate the three integrals needed to compute the center of mass, (\bar{x}, \bar{y}), of the region R bounded by $y=0, x=0, x=2$, and $f(x)=3 e^{x}$ with constant density $\rho=1$. Then, fill in the blanks at the bottom to show how to compute the values of (\bar{x}, \bar{y}).

$$
\begin{aligned}
& m=\int_{0}^{2} 3 e^{x} d x \\
& M_{y}=3 \int_{0}^{2} x e^{x} d x \\
& M_{x}=\frac{1}{2} \int_{0}^{2}\left(3 e^{x}\right)^{2} d x=\frac{1}{2} \int_{0}^{2} 9 e^{2 x} d x \\
& \bar{x}=\frac{M y}{m} \quad \bar{y}=\frac{M x}{m}
\end{aligned}
$$

6. (30 points) Evaluate the following indefinite integrals. Show your work and simplify your answers.

$$
\begin{aligned}
& \quad \text { (a) } \int \frac{4-2 x^{2}}{x^{3}+2 x} d x \\
& x^{3}+2 x=x\left(x^{2}+2\right) \\
& \frac{4-2 x^{2}}{x\left(x^{2}+2\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+2} \\
& 4-2 x^{2}=A\left(x^{2}+2\right)+x(B x+C) \\
& \text { If } x=0: 4=2 A \text {. So } A=2 \\
& 0 x=C x \text { So } C=0 \\
& -2 x^{2}=(A+B) x^{2} \text { So }-2=A+B \mid-2 \ln \left(x^{2}+2\right)+C \\
& \text { So } B=-4
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (b) } \int x^{2} e^{x} d x \\
=
\end{array} \begin{array}{l}
u=x^{2} \\
d u=2 x d x
\end{array} \quad \begin{array}{l}
d v=e^{x} d x \\
v=e^{x}
\end{array} \\
&=x^{2} e^{x}-2\left(x e^{x}-\int e^{x} d x\right) \quad \begin{array}{l}
u=x \quad d v=e^{x} \\
d u=d x \\
v=e^{x}
\end{array} \\
&=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C \\
&= e^{x}\left(x^{2}-2 x+2\right)+C
\end{aligned}
$$

Math 252: Midterm Exam 1

$$
\text { (c) } \int \sin ^{2}(\theta) \cos ^{3}(\theta) d \theta=\int \sin ^{2} \theta \cdot \cos ^{2} \theta \cdot \cos \theta d \theta
$$

Let $x=\sin (\theta)$

$$
\begin{aligned}
& =\int \sin ^{2} \theta\left(1-\sin ^{2} \theta\right) \cos \theta d \theta \\
& =\int u^{2}\left(1-u^{2}\right) d u=\int\left(u^{2}-u^{4}\right) d u
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3} u^{3}-\frac{1}{5} u^{5}+c \\
& =\frac{1}{3}(\sin \theta)^{3}-\frac{1}{5}(\sin (\theta))^{5}+c
\end{aligned}
$$

$$
\text { (d) } \int x \sec ^{2}(x) d x \quad \begin{cases}u=x & d v=\sec ^{2} x d x \\ d u=d x & v=\tan x\end{cases}
$$

$$
=x \tan x-\int \tan x d x
$$

$$
=x \tan x-\int \frac{\sin x d x}{\cos x}
$$

$$
=x \tan x+\ln |\cos x|+C
$$

$$
\begin{aligned}
& \text { 7. (10 points) Evaluate the integral } \int \frac{x^{2}}{\sqrt{4-x^{2}}} d x \text { using trigonometric substitution. You must fully } \\
& \text { simplify your answer. } \\
& \sqrt{4-x^{2}}=2 \cos \theta \\
& \int \frac{x^{2} d x}{\sqrt{4-x^{2}}}=\int \frac{4 \sin ^{2} \theta \cdot 2 \cos \theta d \theta}{2 \cos \theta d \theta}=4 \int \sin ^{2} \theta d \theta \\
& =2\left((1-\cos (2 \theta)) d \theta=2\left(\theta-\frac{1}{2} \sin (2 \theta)\right)+C\right. \\
& =2(\theta-\sin (\theta) \cos (\theta))+C \\
& =2\left[\arcsin \left(\frac{x}{2}\right)-\frac{x}{2} \cdot \frac{\sqrt{4-x^{2}}}{2}\right]+C \\
& =2 \arcsin \left(\frac{x}{2}\right)-\frac{1}{2} \times \sqrt{4-x^{2}}+C
\end{aligned}
$$

Extra Credit (5 points)
(a) Use integration by parts to prove the reduction formula $\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$.

$$
\int(\ln x)^{n} d x \quad \begin{array}{ll}
u=(\ln x)^{n} & d v=d x \\
d u & =n(\ln x)^{n-1} \\
v & =x
\end{array}
$$

$$
=x(\ln x)^{n}-n \int x(\ln x)^{n-1} d x
$$

(b) Use the reduction formula to evaluate $\int(\ln x)^{2} d x$.

$$
\begin{aligned}
& \int(\ln x)^{2} d x=x(\ln x)^{2}-2 \int(\ln x)^{\prime} d x \\
& =x(\ln x)^{2}-2\left(x(\ln x)^{\prime}-\int d x\right)
\end{aligned}
$$

$$
=x(\ln x)^{2}-2 x \ln x+2 x+c
$$

$$
\begin{array}{ll}
\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x)) & \sin (a x) \cos (b x)=\frac{1}{2}(\sin ((a-b) x)+\sin ((a+b) x)) \\
\cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x)) & \sin (a x) \sin (b x)=\frac{1}{2}(\cos ((a-b) x)-\cos ((a+b) x)) \\
\sin (2 \theta)=2 \sin (\theta) \cos (\theta) & \cos (a x) \cos (b x)=\frac{1}{2}(\cos ((a-b) x)+\cos ((a+b) x))
\end{array}
$$

