\qquad

Final Exam

No book, electronics, calculator, or internet access. 125 points possible. 125 minutes maximum.

Allowed notes: $1 / 2$ sheet of letter paper (i.e. 8.5×11 paper) allowed, with anything written on both sides.

1. Evaluate the definite and indefinite integrals:
(a) (6 pts) $\int_{0}^{\pi / 2} \sin ^{3} \theta d \theta=$
(b) (6pts) $\int \sqrt{25-x^{2}} d x=$
2. Evaluate the indefinite integrals:
(a) $(6 \mathrm{pts}) \quad \int t 3^{t} d t=$
(b) (6 pts) $\quad \int \frac{d x}{(x+1)(x-3)}=$
3. (a) (5 pts) Sketch the region bounded by $y=\frac{1}{4} x^{2}$, the y-axis, and the line $y=1$.
(b) (8 pts) Compute the volume of the solid of revolution found by rotating the region in (a) around the x-axis. Simplify your answer.
4. (8 pts) Compute the improper integral. Use appropriate limit notation.

$$
\int_{1}^{\infty} x e^{-x^{2} / 2} d x=
$$

5. Determine whether the following series converge or diverge. Explain your reasoning and identify any test used.
(a) (6pts) $\quad \sum_{n=1}^{\infty} \frac{\sqrt{n}}{12+n}$
(b) (6 pts) $\quad \sum_{n=2}^{\infty}(-1)^{n} \frac{\ln n}{n}$
6. (8 pts) Find the radius and interval of convergence of the power series:
$\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{3^{n} \sqrt{n}}$
7. (8 pts) Find the Taylor series for the function $f(x)=e^{2 x}$ centered at the point $a=-3$. Give your answer in summation notation.
8. (8 pts) Find the arc length of the parametric curve defined by $x=1-\frac{1}{3} t^{3}, y=t^{2}+3$ on the interval $0 \leq t \leq 4$.
9. (6 pts) How accurate is the approximation of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ by its partial sum S_{100} ? Write a correct bound in the box and give a brief justification.
$\left|\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}-S_{100}\right| \leq \square$
10. (a) (5 pts) Does the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ converge or diverge? Explain your reasoning and identify any test used.
(b) (8 pts) Evaluate (find the sum for) the series in (a) by computing $f^{\prime}\left(\frac{1}{2}\right)$ where $f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$.
11. Consider the parametric curve $x=t+\cos t, y=t-\sin t$.
(a) (6 pts$) \quad$ Find the equation of the tangent line at $t=\pi$.
(b) (6pts) Compute the second derivative $\frac{d^{2} y}{d x^{2}}$.
12. (a) (5 pts) Make a careful and reasonably-large sketch of the cardiod $r=1+\sin \theta$. (Label the axes and give dimensions/values along the axes.)
(b) (8 pts) Find the area inside the cardioid in (a).

Extra Credit. (3 pts) These two polar curves both spiral toward the origin:
A. $r=e^{-\theta}$ on $0 \leq \theta<\infty$
B. $r=\frac{1}{\theta}$ on $1 \leq \theta<\infty$

However, one has finite arclength and the other infinite. Which is which? Find the length of the finite one and show the other has infinite length.

Summary of Convergence Tests

Series or Test	Conclusions	Comments
Divergence Test For any series $\sum_{n=1}^{\infty} a_{n}$, evaluate $\lim _{n \rightarrow \infty} a_{n}$.	If $\lim _{n \rightarrow \infty} a_{n}=0$, the test is inconclusive.	This test cannot prove convergence of a series.
	If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series diverges.	
Geometric Series$\sum_{n=1}^{\infty} a r^{n-1}$	If $\|r\|<1$, the series converges to $a /(1-r)$.	Any geometric series can be reindexed to be written in the form $a+a r+a r^{2}+\cdots$, where a is the initial term and r is the ratio.
	If $\|r\| \geq 1$, the series diverges.	
p-Series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	If $p>1$, the series converges.	For $p=1$, we have the harmonic series $\sum_{n=1}^{\infty} 1 / n$.
	If $p \leq 1$, the series diverges.	
Comparison Test For $\sum_{n=1}^{\infty} a_{n}$ with nonnegative terms, compare with a known series $\sum_{n=1}^{\infty} b_{n}$.	If $a_{n} \leq b_{n}$ for all $n \geq N$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.	Typically used for a series similar to a geometric or p-series. It can sometimes be difficult to find an appropriate series.
	If $a_{n} \geq b_{n}$ for all $n \geq N$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.	
Limit Comparison Test For $\sum_{n=1}^{\infty} a_{n}$ with positive terms, compare with a series $\sum_{n=1}^{\infty} b_{n}$ by evaluating $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$	If L is a real number and $L \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge or both diverge.	Typically used for a series similar to a geometric or p-series. Often easier to apply than the comparison test.

Series or Test	Conclusions	Comments
	If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges. If $L=\infty$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.	
Integral Test If there exists a positive, continuous, decreasing function f such that $a_{n}=f(n)$ for all $n \geq N$, evaluate $\int_{N}^{\infty} f(x) d x$.	$\int_{N}^{\infty} f(x) d x \text { and } \sum_{n=1}^{\infty} a_{n}$ both converge or both diverge.	Limited to those series for which the corresponding function f can be easily integrated.
Alternating Series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n} \text { or } \sum_{n=1}^{\infty}(-1)^{n} b_{n}$	If $b_{n+1} \leq b_{n}$ for all $n \geq 1$ and $b_{n} \rightarrow 0$, then the series converges.	Only applies to alternating series.
Ratio Test For any series $\sum_{n=1}^{\infty} a_{n}$ with nonzero terms, let $\rho=\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|$	If $0 \leq \rho<1$, the series converges absolutely.	Often used for series involving factorials or exponentials.
	If $\rho>1$ or $\rho=\infty$, the series diverges.	
	If $\rho=1$, the test is inconclusive.	
Root Test For any series $\sum_{n=1}^{\infty} a_{n}$, let $\rho=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}$.	If $0 \leq \rho<1$, the series converges absolutely.	Often used for series where$\left\|a_{n}\right\|=b_{n}^{n} .$
	If $\rho>1$ or $\rho=\infty$, the series diverges.	
	If $\rho=1$, the test is inconclusive.	

