
Name:

Math 252 Calculus 2 (Bueler) Wednesday, 27 April 2022

Final Exam
No book, electronics, calculator, or internet access. 125 points possible.

125 minutes maximum.

Allowed notes: 1/2 sheet of letter paper (i.e. 8.5 × 11 paper) allowed,

with anything written on both sides.

1. Evaluate the definite and indefinite integrals:

(a) (6 pts)

∫ π/2

0
sin3 θ dθ =

(b) (6 pts)

∫ √
25− x2 dx =



2

2. Evaluate the indefinite integrals:

(a) (6 pts)

∫
t 3t dt =

(b) (6 pts)

∫
dx

(x+ 1)(x− 3)
=



3

3. (a) (5 pts) Sketch the region bounded by y =
1

4
x2, the y-axis, and the line y = 1.

(b) (8 pts) Compute the volume of the solid of revolution found by rotating the region in (a) around

the x-axis. Simplify your answer.



4

4. (8 pts) Compute the improper integral. Use appropriate limit notation.∫ ∞
1

xe−x
2/2 dx =

5. Determine whether the following series converge or diverge. Explain your reasoning and identify any

test used.

(a) (6 pts)

∞∑
n=1

√
n

12 + n

(b) (6 pts)

∞∑
n=2

(−1)n
lnn

n
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6. (8 pts) Find the radius and interval of convergence of the power series:
∞∑
n=1

(−1)n(x+ 2)n

3n
√
n

7. (8 pts) Find the Taylor series for the function f(x) = e2x centered at the point a = −3. Give your

answer in summation notation.
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8. (8 pts) Find the arc length of the parametric curve defined by x = 1 − 1

3
t3, y = t2 + 3 on the

interval 0 ≤ t ≤ 4.

9. (6 pts) How accurate is the approximation of
∞∑
n=1

(−1)n+1

n
by its partial sum S100? Write a correct

bound in the box and give a brief justification.

∣∣∣∣∣
∞∑
n=1

(−1)n+1

n
− S100

∣∣∣∣∣ ≤
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10. (a) (5 pts) Does the series

∞∑
n=1

n

2n
converge or diverge? Explain your reasoning and identify any

test used.

(b) (8 pts) Evaluate (find the sum for) the series in (a) by computing f ′
(

1

2

)
where

f(x) =
∞∑
n=0

xn =
1

1− x
.
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11. Consider the parametric curve x = t+ cos t, y = t− sin t.

(a) (6 pts) Find the equation of the tangent line at t = π.

(b) (6 pts) Compute the second derivative
d2y

dx2
.
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12. (a) (5 pts) Make a careful and reasonably-large sketch of the cardiod r = 1 + sin θ. (Label the

axes and give dimensions/values along the axes.)

(b) (8 pts) Find the area inside the cardioid in (a).
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Extra Credit. (3 pts) These two polar curves both spiral toward the origin:

A. r = e−θ on 0 ≤ θ <∞

B. r =
1

θ
on 1 ≤ θ <∞

However, one has finite arclength and the other infinite. Which is which? Find the length of the finite

one and show the other has infinite length.

blank space
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Summary of Convergence Tests



12


