1. (a) (3 pts) Use the graphs below to shade the region bounded by $y=e^{x / 2}, y=e^{x-1}$ and $x=0$.

find pt. of intersection:

$$
\begin{aligned}
& e^{x / 2}=e^{x-1} \text { if } \\
& \frac{x}{2}=x-1 \\
& x=2 x-2 \\
& 2=x
\end{aligned}
$$

(b) (7 pts) Determine the area of this region using an appropriate integral.

$$
\begin{aligned}
A & \left.=\int_{0}^{2}\left(e^{x / 2}-e^{x-1}\right) d x=2 e^{x / 2}-e^{x-1}\right]_{0}^{2} \\
& =\left(2 e^{2 / 2}-e^{2-1}\right)-\left(2 e^{0 / 2}-e^{0-1}\right) \\
& =2 e-e-2+e^{-1} \\
& =e+\frac{1}{e}-2
\end{aligned}
$$

2. (5 pts) Set up but do not evaluate an integral computing the arc length of the curve $y=\tan \left(x^{2}\right)$ between $x=-\pi / 4$ to $x=\pi / 4$.

$$
\begin{aligned}
& L=\int_{\alpha}^{\beta} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{-\pi / 2}^{\pi / 2} \sqrt{1+4 x^{2} \sec ^{4}\left(x^{2}\right)} d x \\
& y=\tan \left(x^{2}\right) \\
& y^{\prime}=\sec ^{2}\left(x^{2}\right)(2 x)=2 x \sec ^{2} x^{2} \text {. So }\left(y^{\prime}\right)^{2}=4 x^{2} \sec ^{4}\left(x^{2}\right)
\end{aligned}
$$

3. (a) (2 pts) Sketch the region bounded by the curves $y=x^{2}$ and $y=2 x$.

pt of intersection:

$$
\begin{aligned}
& x^{2}=2 x \\
& x^{2}-2 x=0 \\
& x(x-2)=0 \\
& x=0, x=2
\end{aligned}
$$

(b) (6 pts) Use an integral to compute the volume of the solid found by rotating the region in part a. around the x-axis.

$$
\begin{aligned}
V & =\pi \int_{\alpha}^{\beta}\left(R^{2}-r^{2}\right) d x=\pi \int_{0}^{2}\left((2 x)^{2}-\left(x^{2}\right)^{2}\right) d x \\
& =\pi \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x=\pi\left(\frac{4}{3} x^{3}-\frac{1}{5} x^{5}\right)_{0}^{2}=\pi\left(\frac{32}{3}-\frac{32}{5}\right)
\end{aligned}
$$

$$
=\pi\left(\frac{2.32}{15}\right)=\frac{64 \pi}{15}
$$

(c) 4 pts) Use the shell method to set up an integral to calculate the volume of the solid obtained by rotating the region in part \mathbf{a}. around the y-axis. You do not need to evaluate the integral

$$
V=2 \pi \int_{\alpha}^{\beta} r h d x=2 \pi \int_{0}^{2} x \cdot\left(2 x-x^{2}\right) d x=2 \pi \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x
$$

(d) (4 pts) Use the slicing method (disks/washers) to set up an integral to calculate the volume of the solid obtained by rotating the region in part \mathbf{a}. around the y-axis. You do not need to evaluate the integral.

$$
V=\pi \int_{\alpha}^{2}\left(R^{2}-r^{2}\right) d y=\pi \int_{0}(\sqrt{y})^{-}-\left(\frac{y}{2}\right)^{2} d y=\pi \int_{0}^{4}\left(y-\frac{1}{4} y^{2}\right) d y
$$

4. (10 pts) A 3-meter long whip antenna has linear density $\rho(x)=5-\frac{1}{x+1}$ grams per centimeter

$$
\begin{aligned}
\text { mass }=\int_{\alpha}^{\beta} e(x) d x & \left.=\int_{0}^{300}\left(5-\frac{1}{x+1}\right) d x=5 x-\ln (x+1)\right]_{0}^{300} \\
3 \text { meters }=300 \mathrm{~cm} . \quad & =(5 \cdot 300-\ln (300+1))-(5 \cdot 0-\ln (0+1)) \\
& =1500-\ln (301) \text { grams }
\end{aligned}
$$

5. ($\mathbf{1 0} \mathbf{~ p t s}$) A 1-meter spring requires 20 J to compress the spring to a length of 0.9 meters. How much work would it take to compress the spring from 1 meter to 0.8 meters?
(1) Find K.

$$
\left.W=20 J=\int_{0}^{0.1} k x d x=\frac{k}{2} x^{2}\right]_{0}^{0.1}=\frac{k}{200}
$$

So $4000=K$.
(2) Find W.

$$
\begin{aligned}
& \text { Find W. } \\
& W=\int_{0}^{0.2} 4000 x d x=\left.2000 x^{2}\right|_{0} ^{0.2}=\frac{2000}{25}=80 \mathrm{~J}
\end{aligned}
$$

6. Evaluate the definite integrals. Simplify your answers
(a) $(7 \mathrm{pts})$

$$
\int_{0}^{\pi / 4} \tan \theta d \theta
$$

$$
\left.=\int_{0}^{\pi / 4} \frac{\sin \theta}{\cos \theta} d \theta=-\ln (\cos \theta)\right]_{0}^{\pi / 4}=-\ln (\cos (\pi / 4))+\ln (\cos (0))
$$

$$
=-\ln (\sqrt{2} / 2)+\ln (1)
$$

$$
=-\ln (\sqrt{2} / 2)=\ln (\sqrt{2})
$$

(b) (7 pts) $\quad \int_{0}^{2} x e^{3 x} d x \quad\left[\begin{array}{ll}\text { IB } & \\ u=x & d v=e^{3 x} d x \\ d u=d x & v=\frac{1}{3} e^{3 x}\end{array}\right.$

$$
\begin{aligned}
& \left.=x \cdot \frac{1}{3} e^{3 x}\right]_{0}^{2}-\frac{1}{3} \int_{0}^{2} e^{3 x} d x \\
& =\left(\frac{2}{3} e^{6}-0\right)-\left[\frac{1}{9} e^{3 x}\right]_{0}^{2} \\
& =\frac{2}{3} e^{6}-\left(\frac{1}{9} e^{6}-\frac{1}{9} e^{0}\right)=\frac{5}{9} e^{6}+\frac{1}{9}
\end{aligned}
$$

7. Evaluate the indefinite integrals.

$$
\begin{array}{ll}
=\int \sin ^{2}(4 x) \cos ^{2}(4 x) \sin (4 x) d x \\
= & \int\left(1-\cos ^{2}(4 x)\right) \cos ^{2}(4 x)(\sin (4 x) d x) \quad \begin{array}{l}
\text { let } u=\cos (4 x) \\
d u=-4 \sin (4 x) d x \\
-\frac{1}{4} d u=\sin (4 x) d x
\end{array} \\
=-\frac{1}{4} \int\left(1-u^{2}\right) u^{2} d u=-\frac{1}{4} \int\left(u^{2}-u^{4}\right) d u=-\frac{1}{4}\left(\frac{1}{3} u^{3}-\frac{1}{5} u^{5}\right)+C \\
-\frac{1}{12} \cos ^{3}(4 x)+\frac{1}{20} \cos ^{3}(4 x)+C \quad
\end{array}
$$

(a) (6 pts) $\quad \int \sec ^{4}(x) d x$

$$
\begin{aligned}
& =\int \sec ^{2} x\left(\sec ^{2} x d x\right) \\
& =\int\left(1+\tan ^{2} x\right) \sec ^{2} x d x \\
& =\int\left(1+u^{2}\right) d u=u+\frac{1}{3} u^{3}+C \\
& =\tan (x)+\frac{1}{3} \tan ^{3}(x)+c
\end{aligned}
$$

Math 252: Midterm Exam 1

$$
\begin{aligned}
(\text { (c) }(6 \operatorname{pts}) & \int \arcsin (x) d x \\
= & x \arcsin (x)-\int \frac{x d x}{\sqrt{1-x^{2}}} \\
= & x \arcsin (x)+\frac{1}{2} \int u^{-1 / 2} d u \\
= & x \arcsin (x)+u^{\frac{1}{2}}+C \\
= & x \arcsin (x)+\sqrt{1-x^{2}}+C
\end{aligned}
$$

$$
\begin{cases}\text { IB } & \\ u=\arcsin (x) & d v=d x \\ d u=\frac{1}{\sqrt{1-x^{2}}} d x & v=x\end{cases}
$$

partial fractions

$$
\begin{aligned}
& \text { (c) (6 pts) } \int \frac{2}{(2 x+1)(2 x-3)} d x \quad \frac{2}{(2 x+1)(2 x-3)}=\frac{A}{2 x+1}+\frac{B}{2 x-3} \text { or } \\
& 2=A(2 x-3)+B(2 x+1) \\
& =\int\left(\frac{-1 / 2}{2 x+1}+\frac{1 / 2}{2 x-3}\right) d x \\
& \text { If } x=-\frac{1}{2}: 2=A(-1-3)=-4 A \\
& \text { If } x=\frac{3}{2}: 2=B\left(2\left(\frac{3}{2}\right)+1\right)=B(4) \\
& B=1 / 2 \\
& =\frac{-1}{4} \ln |2 x+1|+\frac{1}{4} \ln |2 x-3|+C \\
& =\ln \left(\left|\frac{2 x-3}{2 x+1}\right|^{1 / 4}\right)+c
\end{aligned}
$$

8. (10 pts) Use the method of Trigonometric Substitution to evaluate the integral $\int \frac{d x}{\left(4+x^{2}\right)^{2}}$. Your final answer must be simplified and written in terms of x.
Let $x=2 \tan \theta$

$$
\begin{aligned}
d x & =2 \sec ^{2} \theta d \theta \\
4+x^{2} & =4+4 \tan ^{2} \theta \\
& =4 \sec ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d x}{\left(4+x^{2}\right)^{2}} \\
& =\int \frac{2 \sec ^{2} \theta d \theta}{16 \sec ^{4} \theta}=\frac{1}{8} \int \frac{d \theta}{\sec ^{2} \theta}
\end{aligned}
$$

$$
=\frac{1}{8} \int \cos ^{2} \theta d \theta=\frac{1}{16} \int(1+\cos (2 \theta)) d \theta=\frac{1}{16}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)
$$

$$
=\frac{1}{16}(\theta+\sin \theta \cos \theta)
$$

$$
=\frac{1}{16}\left(\arctan \left(\frac{x}{2}\right)+\frac{2 x}{x^{2}+4}\right)
$$

$$
\begin{aligned}
& \frac{x}{2}=\tan \theta \\
& \sin \theta=\frac{x}{\sqrt{x^{2}+4}} \\
& \cos \theta=\frac{2}{\sqrt{x^{2}+4}}
\end{aligned}
$$

Extra Credit. A particle moving along a straight line has a velocity of $v(t)=t e^{-t}$ after t seconds where v is measured in meters per second.
(a) (2 pts) How far does the particle travel from time $t=0$ seconds to time $t=T$ seconds?

$$
\begin{aligned}
& \underset{\text { traveled }}{\text { distance }}=\int_{0}^{T} t e^{-t} d t \\
& u=t \quad d v=e^{-t} d t \\
& d u=d t \quad v=-e^{-t} \\
& \left.=-t e^{-t}\right]_{0}^{\top}+\int_{0}^{\top}-t d t=-T e^{-T}-\left[e^{-t}\right]_{0}^{\top}=-T e^{-T}-\left(e^{-T}-e^{0}\right) \\
& =-e^{-T}(T+1)+1 \text { meters. }
\end{aligned}
$$

(b) (3 pts) Use your answer from part a. to determine how far the particle travels in the long-term, as $T \rightarrow \infty$.

$$
\lim _{T \rightarrow \infty}\left(-e^{-T}(T+1)+1\right)=\lim _{T \rightarrow \infty}\left(1-\frac{T+1}{e^{T}}\right)=1
$$

The particle only moves 1 meter.

You may find the following trigonometric formulas useful. Other formulas, not listed here, should be in your memory, or you can derive them from the ones here.

$$
\begin{array}{ll}
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta & \sin (a x) \sin (b x)=\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) \\
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta & \sin (a x) \cos (b x)=\frac{1}{2} \sin ((a-b) x)+\frac{1}{2} \sin ((a+b) x) \\
& \cos (a x) \cos (b x)=\frac{1}{2} \cos ((a-b) x)+\frac{1}{2} \cos ((a+b) x)
\end{array}
$$

