1. Compute and simplify the improper integrals, or show they diverge. Use correct limit notation.
(a) (6pts) $\int_{0}^{1} \frac{d x}{x^{1 / 3}}=\lim _{a \rightarrow 0}+\int_{a}^{1} x^{-1 / 3} d x=\lim _{a \rightarrow 0^{+}}\left[\frac{x^{2 / 3}}{2 / 3}\right]_{a}^{1}$

$$
\left.=\lim _{a \rightarrow 0^{+}} \frac{3}{2}\left(1-a^{2 / 3}\right)=\frac{3}{2}(1-0)=\frac{3}{2}\right)
$$

2. (4 pts) Find a formula for the general term a_{n} of the sequence
$\{0,3,8,15,24,35,48, \ldots\}$
$0=1-1$
$3=4-1=2^{2}-1$
$8=9-1=3^{2}-1$
$15=16-1=4^{2}-1$

2
3. Do the following series converge or diverge? Show your work, including naming any test you use.
limit compare to $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}(p=3 / j ;$ currapes)

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n+1}}{n^{2}}}{\frac{\sqrt{n}}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n+1} \pi^{k}}{\sqrt{n} \cdot x^{2}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n+1}{n}}=\sqrt{1} \neq 0, \infty \\
\therefore \text { Converges }
\end{gathered}
$$

(b) (bps) $\sum_{k=1}^{\infty} \ln (n)$
$\lim _{n \rightarrow \infty} \ln n=+\infty \therefore$ diverges by divergence test
(C)($\left(p\right.$ ps) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$
$b_{n}=\frac{1}{\sqrt{n+1}} \geq 0, \lim _{n \rightarrow \infty} b_{n}=0, b_{n}$ decreases
converges by alternating series test
4. Do the following series converge or diverge? Show your work, including naming any test you use. (a) (6 pts) $\quad \sum_{n=0}^{\infty} \frac{2^{n}}{(n+2)!}$
ratiotest: $\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+3)!}}{\frac{2^{n}}{(n+2)!}}=\lim _{n \rightarrow \infty} \frac{2^{n+1}(n+2)!}{3^{n}((n+3)(n+2)!}$

$$
=\lim _{n \rightarrow \infty} \frac{2}{n+3}=0=\rho<1 \quad \therefore \text { converges }
$$

(b) $(6 p s s) \sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+3}\right)^{n}$
root ts: $\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n+1}{2 n+3}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n+3}$

$$
=\frac{1}{2}=\rho<1 \quad \therefore \text { converges }
$$

${ }^{(c)}\left(6 p(s) \sum_{n=1}^{\infty} \frac{n}{\left(e^{(n)}\right)}\right.$
integral test:

$$
\int_{1}^{\infty} x e^{-x^{2}} d x=\lim _{\substack{u=x^{2} \\\left(\frac{d u}{2}=x d x\right)}} \int_{1}^{t^{2}} e^{-u} \frac{d u}{2}
$$

$$
=\lim _{t \rightarrow \infty} \frac{-1}{2}\left[e^{-4}\right]_{1}^{t^{2}}=\lim _{t \rightarrow \infty}-\frac{1}{2}\left[e^{-t^{2}}-e^{-1}\right]=+\frac{1}{2 e}<\infty
$$

\therefore scavenges
also works: root, limit comparison, ratio
5. Consider the infinite series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots$
(a) (4 pts) Write the series using sigma (\sum) notation.

(b) (4 pts) Compute and simplify S_{3}, the partial sum of the first three terms.

$$
S_{3}=1-\frac{1}{3}+\frac{1}{5}=\frac{15-5+3}{15}=\frac{13}{15}
$$

(c) (5 pts) Does the series converge absolutely, conditionally, or neither (diverge)? Show your work, identify any tests) used, and circle one answer.
alternating series tet: $b_{n}=\frac{1}{2 n+1} \geq 0, \lim _{n \rightarrow \infty} b_{n}=1$, \therefore series converges

6. Use the well known geometric series $\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n}$ to find power series representations for the following functions. Show your work. (Hint on part (b): Use the answer from part (a).)

$$
\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

(b) (6 pts) $\quad \arctan x$ $=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2^{n+1}}$

7. $\left(5\right.$ pts \quad Compute and simplify the value of the infinite series $\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^{n+1}=\left(\frac{1}{5}\right)^{2}+\left(\frac{1}{5}\right)^{3}+\cdots$ geometric with $a=\left(\frac{1}{5}\right)^{2}, r=\frac{1}{5}$:

$$
\sum \cdots=\frac{a}{1-r}=\frac{(1 / 5)^{2}}{1-1 / 5}=\frac{1}{5^{2}} \cdot \frac{5}{4}=\frac{1}{20}
$$

$$
\begin{aligned}
& \text { 8. (6 pts) If } f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text {, find a simplified power series representation for } f^{\prime}\left(-x^{2}\right) \text {. } \\
& \text { 8. (opts) If } f(x)=\sum_{n=0} \bar{n} \text { ! find a simplified power series representation for } f^{\prime}\left(-x^{2}\right) \text {. } \\
& f^{\prime}(x)=\sum_{n=0}^{\infty} \frac{n x^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} \text { the constant } \\
& \begin{array}{l}
\left.f^{\prime}\left(-x^{2}\right)=\sum_{n=1}^{\infty} \frac{\left(-x^{2}\right)^{n-1}}{(n-1)!}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-2}}{(n-1)!}{ }^{2 k}=n-1\right]
\end{array} \\
& \stackrel{\downarrow}{=} \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{k!}
\end{aligned}
$$

$$
f^{\prime}\left(-x^{2}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{k!}
$$

9. Find the radius and interval of convergence of the following power series.
(a) (6 pts) $\quad \sum_{n=1}^{\infty} \frac{3^{n} x^{n}}{n!}$
ratio test: $\lim _{n \rightarrow \infty} \frac{\frac{\left.3^{n+1} \mid x\right)^{n+1}}{(n+1)!}}{\frac{\left.3^{n} \mid x\right)^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{3^{x+1}|x|^{(x+1)} n!}{3^{n} \mid x x^{x+}(n+1) n!}$

$$
=\lim _{n \rightarrow \infty} \frac{3|x|}{n+1}=0=\rho<1 \text { always }(\text { for all } x)
$$

(b) (6pts) $\quad \sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n 2^{n}}$
ratio test: $\lim _{n \rightarrow \infty} \frac{\frac{|x+1|^{n+1}}{(n+1) 2^{n+1}}}{\frac{|x|^{n}}{n 2^{n}}}=\lim _{n \rightarrow \infty} \frac{|x+1|^{\mid n+1} n 2^{n}}{\left(\mid x+11^{n}(n+1) 2^{n+1}\right.}$

$$
\left.=\frac{|x+1|}{2} \lim _{n \rightarrow \infty} \frac{n}{n+1}=\frac{|x+1|}{2}=p<1 \Leftrightarrow|x+1|<2\right)^{=R}
$$

$x=-3: \sum_{n=1}^{\infty} \frac{(-2)^{n}}{n 2^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges AST
$x=1: \sum_{n=1}^{\infty} \frac{2^{n}}{n 2^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges harmonic

$$
R=2
$$

interval: $[-3,1)$

$$
S_{1, \ldots} \in \text { see problem } 5
$$

Extra Credit. (3pts) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1}$ converges to $\pi / 4$. Suppose you wanted to use this series to obtain an estimate of $\pi / 4$ that is within 0.0001 of the actual value. Determine the fewest number of terms you would need to sum in order to obtain this level of accuracy. Explain your reasoning.

BLANK SPACE

