Math 252: Quiz 1							7 Sept 2023	
Name:								/ 25
					_			

30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

For each problem below, you are strongly encouraged to sketch the region and draw a sample slice.

1. [8 points] Find the area of the region enclosed by $y = 5 - x^2$ and y = 3 - x.

2. [8 points] Find the volume of the solid obtained by rotating region determined by $y = e^{-x}$, y = 0, x = -1, and x = 1 about the *x*-axis.

3. [9 points points] Let *R* be the region bounded by $y = 2x^2$ and $y = x^3$, graphed below. Set up an integral to find the volume of the solid obtained if:

4=2x2 OR X= 1/9/2 **a** R rotated about the x-axis. $y = x^3$ $V = \pi \int_{-\infty}^{2} (2x^2)^2 - (x^3)^2 dx$ $x = \sqrt[3]{4}$ **b** *R* rotated about the y-axis. $V = \pi \int_{-\infty}^{\infty} \left(\left(\sqrt[3]{y} \right)^2 \right)^2$ c. *R* is the base of a solid with cross-sections perpendicular to the base and parallel to the y-axis are squares. $V = \int_{0}^{2} (2x^{2} - x^{3})^{2} dx$ area of square w/height: $2x^{2} - x^{3}$