
\qquad / 25
30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [8 points] Let R be the region bounded by $y=6 x-3 x^{2}$. Use the Method of Cylindrical Shells to find the volume of the solid obtain by rotating R about the y-axis. (Hint: Sketch R. Sketch a sample slice of R.)

$$
y=6 x-3 x^{2}=3 x(2-x)
$$

$$
\begin{aligned}
V & =2 \pi \int_{0}^{2} x\left(6 x-3 x^{2}\right) d x \\
& =2 \pi \int_{0}^{2}\left(6 x^{2}-3 x^{3}\right) d x \\
& =2 \pi\left[2 x^{3}-\frac{3}{4} x^{4}\right]_{0}^{2} \\
& =2 \pi\left(2 \cdot 2^{3}-\frac{3}{4} 2^{4}\right)=2 \pi(16-12) \\
& =8 \pi
\end{aligned}
$$

2. [4 points] Let R be the region bounded by $x=\sqrt{y}+1, x=1$, and $x=3$. Use the Method of Cylindrical Shells to set up but do not evaluate an integral to find the volume of the solid obtain by rotating R about the x-axis.

$$
\begin{aligned}
& \text { If } x=3, \quad 3=\sqrt{y}+1 . \text { So } y=2 . \\
& \begin{aligned}
V & =2 \pi \int_{0}^{2} y(3-(\sqrt{y}+1)) d y \\
& =2 \pi \int_{0}^{2}\left(2 y-y^{3 / 2}\right) d y
\end{aligned}
\end{aligned}
$$

Formulas: \quad arc length $=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \quad$ surface area $=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
3. [4 points] Set up but do not evaluate an integral for the length of the curve $y=\sin (x)$ from $x=0$ to $x=\pi$.

$$
\begin{aligned}
& y=\sin (x) \\
& y^{\prime}=\cos (x)
\end{aligned}
$$

$$
\operatorname{arclength}=\int_{0}^{\pi} \sqrt{1+\cos ^{2} x} d x
$$

4. [5 points] Find the surface area generated by revolving the curve $y=\frac{1}{3} x^{3}$ between $x=1$ to $x=2$

$$
\begin{aligned}
& S A=2 \pi \int_{1}^{2} \frac{1}{3} x^{3} \sqrt{1+\left(x^{2}\right)^{2}} d x=\frac{2 \pi}{3} \int_{1}^{2}\left(1+x^{4}\right)^{1 / 2} x^{3} d x \\
& \text { Let } u=1+x^{4} \quad=\frac{2 \pi}{3} \cdot \frac{1}{4} \int_{2}^{17} u^{1 / 2} d u=\left.\frac{\pi}{6} \cdot \frac{2}{3} \cdot u^{3 / 2}\right|_{2} ^{17} \\
& d u=4 x^{3} d x
\end{aligned}
$$

$$
\frac{1}{4} d u=x^{3} d x
$$

$$
x=1, u=2
$$

$$
x=2, u=17
$$

$$
=\frac{\pi}{9}\left(17^{3 / 2}-2^{3 / 2}\right)
$$

5. [3 points] Evaluate the indefinite integral $\int \sqrt{y} \sqrt{1+\frac{1}{4 y}} d y$.

$$
\begin{aligned}
=\int \sqrt{y+\frac{1}{4}} d y & =\frac{2}{3}\left(y+\frac{1}{4}\right)^{3 / 2}+c \\
& =\frac{1}{12}(4 y+1)^{3 / 2}+C
\end{aligned}
$$

