Name: \qquad
\square
30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [8 points] Let R be the region bounded by $y=6 x-3 x^{2}$. Use the Method of Cylindrical Shells to find the volume of the solid obtain by rotating R about the y-axis. (Hint: Sketch R. Sketch a sample slice of R.)
2. [4 points] Let R be the region bounded by $x=\sqrt{y}+1, x=1$, and $x=3$. Use the Method of Cylindrical Shells to set up but do not evaluate an integral to find the volume of the solid obtain by rotating R about the x-axis.

Formulas: \quad arc length $=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \quad$ surface area $=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
3. [4 points] Set up but do not evaluate an integral for the length of the curve $y=\sin (x)$ from $x=0$ to $x=\pi$.
4. [5 points] Find the surface area generated by revolving the curve $y=\frac{1}{3} x^{3}$ between $x=1$ to $x=2$ about the x-axis. (Yes. You can evaluate this integral!)
5. [3 points] Evaluate the indefinite integral $\int \sqrt{y} \sqrt{1+\frac{1}{4 y}} d y$.

