Name: \qquad / 25

30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [8 points] A spring has a natural length of 1 m . It takes 20 J to stretch the spring from 1 m to 1.5 m . How much work would it take to stretch the spring from 1 m to 2 m ?

- Find K.

$$
\begin{aligned}
& 20=\int_{0}^{\frac{1}{2}} k x d x=\left.\frac{1}{2} k x^{2}\right|_{0} ^{\frac{1}{2}}=\frac{1}{8} k . \text { so } k=20.8=160 . \\
& W=\int_{0}^{1} 160 x d x=\left.80 x^{2}\right|_{0} ^{1}=80 \mathrm{~J}
\end{aligned}
$$

2. [8 points] Find the work required to pump all the water out of a cylinder that has a circular base of 2 ft and height of 10 ft . Use the fact that the density of water is $62 \mathrm{lb} / \mathrm{m}^{3}$. Units

$$
\begin{gathered}
\text { weight/firce } \\
\text { of slice }
\end{gathered}=\pi \cdot 10^{2} \cdot 62 \cdot d x=6200 \pi \mathrm{dx} \text { \& }
$$

 moved

$$
\begin{aligned}
& W=\int_{0}^{10} 6200 \pi(10-x) d x=\left.6200 \pi\left(10 x-\frac{1}{2} x^{2}\right)\right|_{0} ^{10} \\
& =6200 \pi(100-50)=(6200 \pi)(50)=310,000 \pi \mathrm{ft} .16
\end{aligned}
$$

3. [4 points] Find the center of mass of a 1 -dimensional rod of length L with density $\rho=3 x^{2}$. (Assame the rod starts at $x=0$ and ends at $x=L$.)

$$
\begin{aligned}
& \underbrace{\frac{1}{x}}_{0} L \quad m=\int_{0}^{L} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=L^{3} \\
& M=\int_{0}^{L} x \cdot 3 x^{2} d x=\int_{0}^{L} 3 x^{3} d x=\left.\frac{3}{4} x^{4}\right|_{0} ^{2}=\frac{3}{4} L^{4} \\
& \bar{x}=\frac{M}{m}=\frac{\frac{3}{4} L^{4}}{L^{3}}=\frac{3 L}{4}=\frac{3}{4} L
\end{aligned}
$$

seems plausible.
4. [5 points] Let R be the region bounded by $y=\sqrt{x}$ and $y=\frac{1}{2} x$. Suppose R has density $\rho=2$. Set up the integrals needed to calculate \bar{x}, the x-coordinate of the center of mass of R.

$$
m=\int_{a}^{b} \rho(x)(f(x)-g(x)) d x, \quad M_{y}=\int_{a}^{b} \rho(x) x(f(x)-g(x)) d x, \quad M_{x}=\int_{a}^{b} \frac{\rho(x)}{2}\left((f(x))^{2}-(g(x))^{2}\right) d x
$$

pts of $\begin{aligned} & \text { pts of } \\ & \text { intersection: } \\ & \text { in } \\ & \text { in } \\ & \frac{1}{2} x . ~ S o ~ \\ & x\end{aligned}=\frac{x^{2}}{4}$ or $0=x^{2}-4 x$ So $x=0$ or $x=4$.

$$
\begin{aligned}
& m=\int_{0}^{4} 2\left(\sqrt{x}-\frac{1}{2} x\right) d x \\
& M_{y}=\int_{0}^{4} 2(x)\left(\sqrt{x}-\frac{1}{2} x\right) d x \\
& \bar{X}=M_{y} / m
\end{aligned}
$$

