Math 252: Quiz 7

30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [8 points] For each series below (i) write the series using \sum notation, (ii) determine whether the series converges, (iii) explain your reasoning, (iv) if the series converges, determine its sum.
a. $2+\frac{2}{\pi}+\frac{2}{\pi^{2}}+\frac{2}{\pi^{3}}+\frac{2}{\pi^{4}}+\cdots=\sum_{n=1}^{\infty} 2\left(\frac{1}{\pi}\right)^{n-1}$
(ii) $\sum_{n=1}^{\infty} 2\left(\frac{1}{\pi}\right)^{n-1}$ converges (wi) It is a convergent geometric series, $|r|=\frac{1}{\pi}<1$.
(40) $\sum_{n=1}^{\infty} 2\left(\frac{1}{\pi}\right)^{n-1}=\frac{2}{1-\frac{1}{\pi}}=\frac{2}{\frac{\pi-1}{\pi}}=\frac{2 \pi}{\pi-1}$
b. $-\frac{4}{3}+\frac{16}{9}-\frac{64}{27}+\frac{256}{81}-\cdots=\sum_{n=1}^{\infty}\left(-\frac{4}{3}\right)^{n}=\sum_{n=1}^{\infty}\left(\frac{-4}{3}\right)\left(\frac{-4}{3}\right)^{n-1}$

A divergent geometric series be cause $|r|=\left|-\frac{4}{3}\right|=\frac{4}{3}>1$.
2. [3 points] Given the series $\sum_{n=1}^{\infty}\left(\frac{3}{n+3}-\frac{3}{n+4}\right)$.
a. Find S_{k}, the k th partial sum of the series.

$$
\begin{aligned}
S_{k} & =\left(\frac{3}{4}-\frac{3}{5}\right)+\left(\frac{3}{5}-\frac{3}{6}\right)+\cdots+\left(\frac{3}{k+2}-\frac{3}{k+3}\right)+\left(\frac{3}{k+3}-\frac{3}{k+4}\right) \\
& =\frac{3}{4}-\frac{3}{k+4}
\end{aligned}
$$

b. Use S_{k} to determine the value of series or explain why the series diverges.

$$
\lim _{k \rightarrow \infty}\left(\frac{3}{4}-\frac{3}{k+4}\right)=\frac{3}{4}
$$

$$
\text { So } \sum_{n=1}^{\infty}\left(\frac{3}{n+3}-\frac{3}{n+4}\right) \text { converges to } \frac{3}{4} \text {. }
$$

3. [4 points] Use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges or diverges. $\left.\int_{1}^{\infty} \frac{x d x}{e^{x^{2}}}=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{x d x}{e^{x^{2}}}=\lim _{b \rightarrow \infty} \frac{-1}{2 e^{x^{2}}}\right]_{1}^{b}$

$$
=\lim _{b \rightarrow \infty}\left[-\frac{1}{2}\left(\frac{1}{e^{b^{2}}}-\frac{1}{e}\right)\right]=\frac{1}{2 e}
$$

4. [2 points] State what is meant by the harmonic series and whether the series converges or diverges.

5. [8 points] Determine whether the series below converge or diverge. Explain your reasoning.

$$
\text { a. } \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{4}}}=\sum_{n=1}^{\infty} \frac{1}{n^{4 / 3}}
$$

$p=\frac{4}{3}>1$. This is a convergent p-series.
b. $\sum_{n=1}^{\infty} \frac{n}{\ln (n)}$

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln n} \stackrel{4}{=} \lim _{n \rightarrow \infty} \frac{1}{\frac{1}{n}}=\lim _{n \rightarrow \infty} n=\infty
$$

So the series diverges by the Divergence Test.

