Name: \qquad
30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [8 points] For each series below (i) write the series using \sum notation, (ii) determine whether the series converges, (iii) explain your reasoning, (iv) if the series converges, determine its sum.
a. $2+\frac{2}{\pi}+\frac{2}{\pi^{2}}+\frac{2}{\pi^{3}}+\frac{2}{\pi^{4}}+\cdots$
b. $-\frac{4}{3}+\frac{16}{9}-\frac{64}{27}+\frac{256}{81}-\cdots$
2. [3 points] Given the series $\sum_{n=1}^{\infty}\left(\frac{3}{n+3}-\frac{3}{n+4}\right)$.
a. Find S_{k}, the k th partial sum of the series.
b. Use S_{k} to determine the value of series or explain why the series diverges.
3. [4 points] Use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges or diverges.
4. [2 points] State what is meant by the harmonic series and whether the series converges or diverges.
5. [8 points] Determine whether the series below converge or diverge. Explain your reasoning.
a. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{4}}}$
b. $\sum_{n=1}^{\infty} \frac{n}{\ln (n)}$
