Math 252: Quiz 8		2 Nov 2023
Name:	Solutions	/ 25

30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [12 points] Use the comparison test or the limit comparison test to determine if the series converges or diverges. A complete answer includes (i) which test you are using, (ii) a clear application of the test, and (iii) a conclusion drawn from the test.

a.
$$\sum_{n=1}^{\infty} \frac{n!}{(n+2)!} = \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+1)}$$

Use comparison test to convergent p-series
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

Since $(n+2)(n+1) > n^2$, $0 \le \frac{1}{(n+2)(n+1)} < \frac{1}{n^2}$.
So
$$\sum_{n=1}^{\infty} \frac{n!}{(n+2)!} \quad \text{Converges.}$$

b.
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$$

Apply limit comparison test to convergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \cdot \frac{1}{n^{3/2}} \cdot \frac{1}{n^{3/2}} = \lim_{n \to \infty} \frac{\ln(n)}{n^2} \cdot \frac{n^2}{1} = \lim_{n \to \infty} \frac{\ln(n)}{\sqrt{n}} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{n} \cdot$

Math 252: Quiz 8
c.
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{5^n}$$

Comparison test with convergent geometric Series
 $\sum_{n=1}^{\infty} (\frac{1}{5})^n$. Since $0 \le \sin^2(n) \le 1$, $0 \le \frac{\sin^2(n)}{5^n} \le \frac{1}{5^n}$.
N=1
So $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{5^n}$ converges.
 $h=1$

2. [12 points] Do the series converge absolutely, conditionally, or neither (diverge)? A complete answer includes (i) which test(s) you are using, (ii) a clear application of the test(s), and (iii) a circled answer.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+2}}$$

• Apply limit comparison test with
$$\sum_{h=1}^{\infty} \frac{1}{\sqrt{h}}$$
, a divergent
p-series.

$$\lim_{n \to \infty} \frac{1}{\sqrt{n+2}} = \lim_{n \to \infty} \frac{1}{\sqrt{n+2}} = 1$$
. So $\sum \left| \frac{(-1)^{n+1}}{\sqrt{n+2}} \right|$ diverges.
• Apply A.S.T.
$$\lim_{n \to \infty} \frac{1}{\sqrt{n+2}} = 0$$
, $b_{n+1} = \frac{1}{\sqrt{n+3}} < \frac{1}{\sqrt{n+2}} = b_n$.
So $\sum_{\substack{n=1 \ N=1}}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+2}}$ Converges.
CONVERGES
ABSOLUTELY CONVERGES DIVERGES

Math 252: Quiz 8
b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n \ln(n))^2}$$

• Apply the limit comparison test with the convergent
 p - series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
So $\lim_{n \to \infty} \frac{1}{n^2(\ln n)^2} = \lim_{n \to \infty} \frac{1}{(\ln n)^2} = 0$.
 $\int_{n \to \infty} \frac{1}{n^2} \frac{(-1)^n}{(\ln \ln n)^2} \int_{n \to \infty} \frac{1}{(\ln n)^2} = 0$.
So $\sum_{n=1}^{\infty} \frac{(-1)^n}{(\ln \ln n)^2} \int_{n \to \infty} \frac{1}{(\ln n)^2} = 0$.
 $\int_{n \to \infty} \frac{1}{(\ln \ln n)^2} \int_{n \to \infty} \frac{1}{(\ln \ln n)^2} \int_{n \to \infty} \frac{1}{(\ln n)^2} \int_{n$

CONVERGES CONVERGES DIVERGES CONDITIONALLY

Math 252: Quiz 8

2 Nov 2023

3. [1 points] The sum of the convergent series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}$ is estimated by its 50th partial sum $S_{50} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1} = 0.2097003$. Estimate how close S_50 is to the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}$.

$$|R_{50}| \leq b_{51} = \frac{1}{2(51)+1} = \frac{1}{103}$$