Name: \qquad
30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [12 points] Use the comparison test or the limit comparison test to determine if the series converges or diverges. A complete answer includes (i) which test you are using, (ii) a clear application of the test, and (iii) a conclusion drawn from the test.
a. $\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$
b. $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{2}}$

Math 252: Quiz 8
c. $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{5^{n}}$
2. [12 points] Do the series converge absolutely, conditionally, or neither (diverge)? A complete answer includes (i) which test(s) you are using, (ii) a clear application of the test(s), and (iii) a circled answer.
a. $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\ln (n)}$

Math 252: Quiz 8
2 Nov 2023
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+2}}$
c. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n \ln (n))^{2}}$
3. [1 points] The sum of the convergent series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n+1}$ is estimated by its 50 th partial sum $S_{50}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n+1}=0.2097003$. Estimate how close S_{50} is to the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n+1}$.

