Math 252: Quiz 8	2 Nov 2023
Name:	/ 25

30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [12 points] Use the comparison test or the limit comparison test to determine if the series converges or diverges. A complete answer includes (i) which test you are using, (ii) a clear application of the test, and (iii) a conclusion drawn from the test.

$$a. \sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$$

b.
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$$

2 Nov 2023

Math 252: Quiz 8
c.
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{5^n}$$

2. [12 points] Do the series converge absolutely, conditionally, or neither (diverge)? A complete answer includes (i) which test(s) you are using, (ii) a clear application of the test(s), and (iii) a circled answer.

a.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\ln(n)}$$

CONVERGES ABSOLUTELY CONVERGES CCONDITIONALLY DIVERGES

2 Nov 2023

Math 252: Quiz 8
b.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+2}}$$

CONVERGES ABSOLUTELY CONVERGES CCONDITIONALLY DIVERGES

2 Nov 2023

Math 252: Quiz 8
c.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n \ln(n))^2}$$

CONVERGES ABSOLUTELY CONVERGES CCONDITIONALLY

DIVERGES

3. [1 points] The sum of the convergent series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}$ is estimated by its 50th partial sum $S_{50} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1} = 0.2097003$. Estimate how close S_{50} is to the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}$.