30 minutes maximum. 25 possible points. No aids (book, calculator, etc.) are permitted Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form.

1. [5 points] Use the limit comparison test to determine whether the series $\sum_{n=0}^{\infty} \frac{3 n+1}{(n+2) 10^{n}}$ converges or diverges.
series to use as a comparison:

$$
\sum_{n=0}^{\infty}\left(\frac{1}{10}\right)^{n} \text {, a convergent geometric series }
$$

application of the limit comparison test:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\frac{3 n+1}{(n+2) 10^{n}}}{\left(\frac{1}{10}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{3 n+1}{(n+2) 10^{n}} \cdot \frac{10^{n}}{1} \\
& =\lim _{n \rightarrow \infty} \frac{3 n+1}{n+2}=3
\end{aligned}
$$

conclusion: The series converges
2. [6 points] Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+\sqrt{n}}$ is conditionally convergent.
a. Show $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+\sqrt{n}}$ is not absolutely convergent. name of test: limit comparison test.
application of the test:
Compare to $\sum_{n=1}^{\infty} \frac{1}{n}$, a divergent $p$-series.

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n+\sqrt{n}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{n+\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{\sqrt{n}}}=1
$$

b. Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+\sqrt{n}}$ is convergent. name of test: alternating series test
application of the test:

$$
\begin{aligned}
& b_{n}=\frac{1}{n+\sqrt{n}}, \\
& \text { - } b_{n+1}=\frac{1}{n+1+\sqrt{n+1}}<\frac{1}{n+\sqrt{n}}=b_{n}, b_{n}{ }^{\prime} s \\
& \text { decreasing. } \\
& \lim _{n \rightarrow \infty} \frac{1}{n+\sqrt{n}}=0
\end{aligned}
$$

3. [10 points] For each series below, use either the ratio test or the root test to determine whether the series converges or diverges.
a. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
name of test: ratio test
application of the test:

$$
\lim _{n \rightarrow \infty} \frac{\frac{3^{n+1}}{(n+1)!}}{\frac{3^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^{n}}=\lim _{n \rightarrow \infty} \frac{3}{n+1}=0
$$

conclusion: the series converges
b. $\sum_{n=2}^{\infty} \frac{n}{(\ln (n))^{n}}$
name of test: root test
application of the test:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{\text { application of the test: }}{(\ln (n))^{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n}}{\ln (n)}=0 \\
\searrow \infty
\end{gathered}
$$

conclusion: the series converges
4. [5 points] Find the radius of convergence, $R$, and the interval of convergence for the power series $\sum_{1}^{\infty} 2\left(\frac{x}{3}\right)^{n}$.
a. Find $R$.
name of test: ratio test
applying the test:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{2\left(\frac{x}{3}\right)^{n+1}}{2\left(\frac{x}{3}\right)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{3}\right|=\frac{|x|}{3}<1 \\
& \text { So } \quad|x|<3, \text { So } R=3 \\
& \text { So } \quad-3<x<3
\end{aligned}
$$

b. Check the endpoints, if any.

$$
\begin{aligned}
& x=3: \quad \sum_{n=1}^{\infty} 2 \text { diverges } \\
& x=-3: \quad \sum_{n=1}^{\infty} 2(-1)^{n} \text { diverges }
\end{aligned}
$$

c. Answer: $R=3 \quad$, interval of convergence: $\quad(-3,3)$

