_____ / 25

30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

- **1.** [6 points] Let $f(x) = \sqrt[3]{x}$.
 - **a**. Find the first and second Taylor polynomials, of degrees 1 and 2, of f(x) at basepoint a = 8.

b. Use the first Taylor polynomial to estimate $\sqrt[3]{9}$.

2. [3 points] We know that $e^x \approx 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$; this is the 3rd Taylor polynomial at a = 0. Evaluate at $-x^2$, and use this to approximate

$$\int_0^1 e^{-x^2} dx \approx$$

Math 252 (Bueler): Quiz 10

- 3. [8 points] Let $f(x) = \ln(1+x)$.
 - **a**. Find the Maclaurin series. (Any valid method is accepted, including from memory. But get the right series!)

b. Use the ratio or root test to find the interval of convergence of the same series. (*Hint. Remember to check the endpoints of the interval.*)

Math 252 (Bueler): Quiz 10

18 April 2024

4. [4 points] Let $f(x) = \sin x$ and a = 0, and consider the interval [-1,1]. Find the smallest value of *n* so that the remainder estimate $|R_n(x)| \le \frac{M}{(n+1)!}(x-a)^{n+1}$, where *M* is an upper bound on $|f^{(n+1)}(z)|$ on the interval, yields $|R_n(x)| \le \frac{1}{20}$ on the interval.

5. [4 points] Find the Taylor series for $f(x) = x^2$ around a = 1.

Math 252 (Bueler): Quiz 10

18 April 2024

Extra Credit. [2 points] Suppose f is this fifth degree polynomial: $f(x) = 1 + x + 2x^2 + 3x^3 + 4x^4 + 5x^5$. Write down a **fully simplified** expression for $p_{17}(x)$, the 17th Taylor polynomial of f(x) at basepoint $a = \sqrt{\pi}$. Explain why your answer, which should require only one line to write, can be written down so immediately.