Math 252 (Bueler): Quiz 10
Name:

\square / 25
30 minutes. No aids (book, notes, calculator, internet, etc.) are permitted. Show all work and use proper notation for full credit. Put answers in reasonably-simplified form. 25 points possible.

1. [6 points] Let $f(x)=\sqrt[3]{x}$.
a. Find the first and second Taylor polynomials, of degrees 1 and 2 , of $f(x)$ at basepoint $a=8$.

$$
\begin{array}{rlrl}
f(x)=x^{1 / 3} & P_{1}(x) & =f(a)+8^{\prime}(a)(x-a) \\
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} & & =2+\frac{1}{3 \cdot 2^{2}}(x-8) \\
& & =\frac{21}{2+\frac{1}{12}(x-8)}=\frac{-2}{9} x^{-5 / 3} \\
& & P_{2}(x) & =2+\frac{1}{12}(x-8)-\frac{2}{9 \cdot 2^{5}}(x-8)^{2}
\end{array}
$$

b. Use the first Taylor polynomial to estimate $\sqrt[3]{9}$.

$$
\begin{aligned}
\sqrt[3]{9} & =f(9) \approx p_{1}(9)=2+\frac{1}{12}(9-8) \\
& =2+\frac{1}{12}=\frac{25}{12} \quad \begin{array}{l}
\text { calculator: } \\
\sqrt[3]{9}=2.0801 \\
\frac{2 \pi}{12}=2.0833
\end{array}
\end{aligned}
$$

2. [3 points] We know that $e^{x} \approx 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$; this is the 3rd Taylor polynomial at $a=0$. Evaluate at $-x^{2}$, and use this to approximate

$$
\begin{aligned}
=\left[x-\frac{x^{3}}{3}+\frac{x^{5}}{10}-\frac{x^{7}}{42}\right]_{0}^{1} & =1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42} \\
& =\frac{26}{35}
\end{aligned}
$$

Matlab:

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d x & =0.7468 \\
26 / 35 & =0.7429
\end{aligned}
$$

Math 252 (Bueler): Quiz 10
3. [8 points] Let $f(x)=\ln (1+x)$.
a. Find the Maclaurin series. (Any valid method is accepted, including from memory. But get the right series!)
b. Use the ratio or root test to find the interval of convergence of the same series. (Hint. Remember to check the endpoints of the interval.)

$$
\begin{aligned}
& \begin{array}{l}
\lim _{n \rightarrow \infty} \frac{\frac{1(x+1)}{n+2}}{\frac{1 x)^{2+1}}{n+1}}=\lim _{n \rightarrow \infty} \frac{|x|^{n+2}(n+1)}{(n+2)|x|^{n+1}}=|x| \lim _{n \rightarrow \infty} \frac{n+1}{n+2}=|x| \\
x=-1: \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n+1}}{n+1}=-\sum_{n=0}^{\infty} \frac{1}{n+1} \text { diverave chasmic) }
\end{array} \\
& x=1: \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} \text { converts, AST. } \\
& \therefore \text { internal: }(-1,1]
\end{aligned}
$$

Math 252 (Bueler): Quiz 10
4. [4 points] Let $f(x)=\sin x$ and $a=0$, and consider the interval $[-1,1]$. Find the smallest value of n so that the remainder estimate $\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}(x-a)^{n+1}$, where M is an upper bound on $\left|f^{(n+1)}(z)\right|$ on the interval, yields $\left|R_{n}(x)\right| \leq \frac{1}{20}$ on the interval.

5. [4 points] Find the Taylor series for $f(x)=x^{2}$ around $a=1$.

$$
\begin{aligned}
& f(x)=x^{2} \quad f(a)=17 \\
& f^{\prime}(x)=2 x \quad f^{\prime}(a)=2 \\
& \begin{array}{cc}
f^{\prime \prime}(x)=2 & f^{\prime \prime}(a)=2 \\
f^{\prime \prime \prime}(x)=0 & \vdots
\end{array} \\
& \left.\begin{array}{c}
f(a)=1 \\
f^{\prime}(a)=2 \\
f^{\prime \prime}(a)=2 \\
\vdots \\
f^{(x)}(a)=0
\end{array}\right\} \\
& \begin{array}{c}
\vdots \\
f^{(n)}(x)=0
\end{array} \\
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& f^{\prime \prime \prime}(x)=0
\end{aligned}
$$ at basepoint $a=\sqrt{\pi}$. Explain why your answer, which should require only one line to write, can be written down so immediately.

$$
P_{17}(x)=1+x+2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5} .
$$

this is because $P_{17}(x)$ is the 17 th degree polynomial which matches $f(a), f^{\prime}(a), \ldots, f^{(12)}(a)$. but $f(x)$ is already a polynomial which matches itself perfectly, all the way to the 17th dernactive in particulen
blank space

